MAINE YANKEE MARINE SAMPLING STUDY FINAL REPORT

Report to the Maine Yankee Atomic Power Company

MAINE YANKEE MARINE SAMPLING STUDY FINAL REPORT

Report to the Maine Yankee Atomic Power Company

> **C.T. Hess, Ph.D.** University of Maine

G. P. Bernhardt, Ph.D. University of Maine

J. H. Churchill, M.S. Woods Hole Oceanographic Institute

> **M. Bowen, M.S.** Normandeau Associates

V. Guiseppe, B.S., D. Breton, M.S., T. Gould, M.S., P. Smitherman University of Maine

February 2005

Table of Contents

1.	EXE	XECUTIVE SUMMARY1		
	1.1	CHARACTERIZATION OF RADIONUCLIDES IN THE BACK RIVER AND INTERTIDAL ZONE AROUND THE FORMER MAINE YANKEE NUCLEAR POWER PLANT SITE	1	
2.	PUR	POSE OF THE MARINE SAMPLING STUDY	3	
2	FIFI			
5.	FILI			
	3.1	SEDIMENT SAMPLING	4	
		3.1.1 Fildse 1	4 11	
		3.1.1.2 Intertidal Subsurface	11	
		3 1 1 3 Subtidal Surface	11	
		3 1 1 4 Subtidal Subsurface	12	
		3.1.2 Phase II	12	
		3.1.2 Intertidal Surface and Subsurface	12	
		3.1.2.2 Subtidal Surface and Subsurface	12	
		3.1.3 Hard to Detect	12	
	3.2	GAMMA SCAN OF INTERTIDAL ZONE	12	
	3.3	BIOTA SAMPLE COLLECTION	13	
	3.4	QUALITY CONTROL	14	
		3.4.1 Sample Tracking and Custody	14	
		3.4.2 Sample Storage and Transfer	14	
	3.5	LABORATORY ANALYSIS	14	
		3.5.1 Gamma Screening	14	
		3.5.2 Lead-210 and Cs-137 Dating	15	
		3.5.3 Hard to Detects	15	
		3.5.4 Quality Control	15	
		3.5.5. Sample Disposal	15	
		3.5.6 Safety	15	
		3.5.7 Quality Assurance	16	
		3.5.8 Background Measurements	16	
4.	NUM	IERICAL MODELING OF FLOWS AND RADIONUCLIDE TRANSPORT		
	IN T	HE SHEEPSCOT RIVER ESTUARINE SYSTEM	17	
	4.1	INTRODUCTION	17	
	4.2	HYDRODYNAMIC MODELING	17	
		4.2.1 Model Description	17	
		4.2.2 Model Grid Generation	18	
		4.2.3 Model Results	19	
		4.2.4 Field Evaluation of the Model	30	
	4.3	MODELING OF RADIONUCLIDE TRANSPORT	38	
		4.3.1 Model History and Description	38	
		4.3.2 Model Results	39	
	4.3	MODELING SUMMARY	47	

5	GAN	AMA SO	CAN RESULTS	49
	5.1	Sedimi	ENT CORES	49
	5.2	LEAD-2	210 Core Results	51
	5.3	SURFIC	IAL SEDIMENTS	51
	5.4	BIOTA	GAMMA SCAN	52
	5.5	HARD	TO DETECT NUCLIDES	53
	5.6	Error	DISCUSSION OF GAMMA SCANS	53
6.	НОТ	PART	ICLE SEARCH RESULTS	102
7	MAI	RINE SA	AMPLE DOSIMETRY	106
	7.1	Marin	E SAMPLING DOSE ASSESSMENT	106
		7.1.1	Purpose of the Dose Assessment Document	106
		7.1.2	Inputs and Data Sources	106
		7.1.3	Current Maine Yankee Intertidal Zone Uses	107
			7.1.3.1 Offsite Dose Calculation Manual (ODCM)	107
			7.1.3.2 Bailey Cove Mudflats Occupancy	107
			7.1.3.3 Worm Digging	108
			7.1.3.4 Clam Harvesting	108
			7.1.3.5 Swimming	108
			7.1.3.6 Fishing	108
		7.1.4	Potential Future Uses of the Intertidal Zone	109
			7.1.4.1 Seaweed Growing and Harvesting	109
			7.1.4.2 Flooding for Lobster Pound or Fish Farming	110
		715	1.1.4.3 Land Reclamation Gardening.	110
		/.1.5	Identification of Scenarios and Pathways/Dose Assessment Framework	110
			7.1.5.1 Commercial worm/Claim Digger and Fish/Shell Fish ingestor	110
			7.1.5.2 Seaweed Cultivator, Eater and Fertilizer User	111
		716	Identification of Flora & Fauna Dose Contributors and Bioaccumulators	112
	72	DOSIM	FTRY RESULTS	112
0	7.2 CO			110
8	CON	ICLUSI	UNS	110
	8.1	SUMMA	ARY	116
	8.2	KEY FI	NDINGS	116
9	QUA	LITY A	ASSURANCE	118
10	PRO	JECT (DRGANIZATION	119
11.	REF	ERENC	CES CITED	120

APPENDIX A

List of Figures

Figure 3-1.	Project location and background locations.	5
Figure 3-2.	Project locus map and farfield sampling locations	6
Figure 3-3.	Phase 1 station locations	7
Figure 3-4.	Phase 2 station locations around Little Oak and Foxbird Island	8
Figure 3-5.	Phase 2 station locations north and South of Little Oak and Foxbird Islands	9
Figure 4-1.	The final version of the grid used for the hydrodynamic and radionuclide models	20
Figure 4-2a.	Same as Figure 4-1 except showing the model grid over plain land and water fields. Indicated is the boundary junction at which the offshore forcing, in the form of a tidal elevation series, is applied. Also indicated is the Sasanoa River, which is a principal opening to the modeled system not accounted for by the grid	21
Figure 4-2b.	The section of the model grid with the highest resolution.	22
Figure 4-3a.	The volume transport over a flood tide through selected model channels. The transports show the splitting of the incoming tidal flow near the southern end of Westport Island and a minimum of tidal flow at the tidal node, where two opposing streams meet, a few km south of the diffuser location.	24
Figure 4-3b.	A smaller scale view of the flood tide volume transport in the vicinity of the Maine Yankee facility	25
Figure 4-3c.	An even smaller scale view of the flood tide volume transport in the vicinity of the Maine Yankee facility.	25
Figure 4-4a.	The RMS value of volume transport within channels encircling Westport Island. These RMS transports show a minimum of tidal energy at the tidal node off the western shore of Westport Island	26
Figure 4-4b.	A smaller scale view of the RMS value of volume transport more clearly showing the minimum of tidal energy at the tidal node. Note that this is roughly 1 km south of the diffuser location.	27
Figure 4-5.	Magnitudes of tidal excursions at selected model channels	28
Figure 4-6.	An ensemble of the positions of particles released from the location of the diffuser into a modeled flow field forced with a boundary elevation series representative of a spring tide.	29
Figure 4-7.	An ensemble of the positions of particles released from the location of the Bailey Cove discharge into a modeled flow field forced with a boundary elevation series representative of a spring tide	29
Figure 4-8.	A view of the model grid in the areas of Bailey Cove and Back River. Indicated is the location of a conductivity-temperature-depth (CTD) recorder set out over two tidal cycles during July 7-8, 2004 as well as the model channel (# 281) that encompassed the CTD location.	31
Figure 4-9.	Time series of modeled water depth and water velocity in channel 281 (Figure 4- 8). The series give evidence of a flood-dominated tidal asymmetry in Bailey	

	Cove. This is marked by a brief flood tide with a strong incoming flow and a long ebb tide with a relatively weak outgoing flow.	31	
Figure 4-10.	A view of the type of drifter used in the field studies of July 7-8, 2004. The unit at the top of the drifter's central cylinder (covered in tape) is a tracking device outfitted with a GPS receiver and a satellite transmitter	33	
Figure 4-11.	The top panels show the positions of drifter released during the ebb tide of July 7, 2004. The bottom panels show the positions of particles released into the model flow field at the same time and location as the first drifter position in the panel above. The particle positions encompass the same time period as the drifter tracks shown above.	34	
Figure 4-12.	The top panels show the positions of drifter released during the ebb tide of July 8, 2004. The bottom panels show the positions of particles released into the model flow field at the same time and location as the first drifter position in the panel above. The particle positions encompass the same time period as the drifter tracks shown above.	35	
Figure 4-13.	The sensor depth (i.e., water level) of the CTD deployed in Bailey Cove (at the location indicated in Figure 4-8). Indicated are the times of rising and falling water between the highest water level and a water level 0.5 m above the minimum sensor depth. These show a tidal asymmetry in which the rate of rising water of the flood tide exceeds the rate of falling water on the ebb tide	37	
Figure 4-14.	The modeled water level of channel 281 in Bailey Cove (Figure 4-8) during the time of the CTD measurements of water level shown in Figure 4-13. As in Figure 4-13, the times of rising and falling water between the highest water level and a water level 0.5 m above the minimum level are indicated. These show a tidal asymmetry of a degree nearly matching that indicated by the measurement of Figure 4-13.	37	
Figure 4-15.	Time series of the quarterly amounts of ⁶⁰ Co and ¹³⁷ Cs released from the Maine Yankee facility. Time periods of the Bailey Cove, diffuser and Little Oak Island discharges are indicated on the bar above time series lines. The circled values show the amounts of radionuclides released in the simulations of discharges from the Bailey Cove outflow and the diffuser.	40	
Figure 4-16a.	Modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co in bottom sediments. These were derived from simulations of radionuclide release from the Bailey Cove discharge (depicted by the black diamond) during flood tide conditions. Note that these are volume concentrations in units of pCi Γ^1 . They may be converted to mass concentrations in units of pCi kg ⁻¹ by dividing by the density of surfacial sediment, typically 1.8 kg Γ^1 .	42	
Figure 4-16b.	A smaller scale view of the modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co of Figure 4-16a.	42	
Figure 4-17a.	Modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co in bottom sediments. These were derived from simulations of radionuclide release from the diffuser (depicted by the black diamond) during flood tide conditions	43	
Figure 4-17b.	A smaller scale view of the modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co of Figure 4-17a.	43	
Figure 4-18a.	8a. Modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co in bottom sediments as derived from simulations of radionuclide release from the Bailey Cove discharge (depicted by		

	the black diamond) during flood tide conditions. These are the same concentration fields shown in Figure 4-16, except with the effects of radioactive decay accounted for	44
Figure 4-18b.	A smaller scale view of the modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co of Figure 4-18a.	44
Figure 4-19a.	Modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co in bottom sediments as derived from simulations of radionuclide release from diffuser (depicted by the black diamond) during flood tide conditions. These are the same concentration fields shown in Figure 4-17, except with the effects of radioactive decay accounted for	45
Figure 4-19b.	A smaller scale view of the modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co of Figure 4-19a.	45
Figure 4-20.	Modeled concentrations of ¹³⁷ Cs and ⁶⁰ Co in bottom sediments. These were derived from simulations of radionuclide release from the Little Oak Island Outfall (depicted by the black diamond) during flood tide conditions	46
Figure 5-1.	6-9 July 2004 Station Locations	54
Figure 5-2.	6-9 July 2004 Station Locations - Close to Plant	55
Figure 5-3.	2-5 Aug 2004 Station Locations	56
Figure 5-4.	2-5 Aug 2004 Station Locations - Close to Plant	57
Figure 5-5.	Station Sasanoa core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	58
Figure 5-6.	Station Pottle Cove core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	58
Figure 5-7.	Station Long Creek core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	59
Figure 5-8.	Station Barry Cove core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	59
Figure 5-9.	Station Wiscasset core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	60
Figure 5-10.	Station Eddy core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	60
Figure 5-11.	Station Chewonki Camp core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	61
Figure 5-12.	Station 2 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	61
Figure 5-13.	Station 8-1 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	62
Figure 5-14.	Station 25 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	62
Figure 5-15.	Station 34, Diffuser, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	63
Figure 5-16.	Station 38, Westport Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	63
Figure 5-17.	Station 44, Eaton Farm Point, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	64
Figure 5-18.	Station 50, Pottle Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	64
Figure 5-19.	Station 59, South Oak Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	65
Figure 5-20.	Station 60, South Oak Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	65
Figure 5-21.	Station 61, Westport Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	66
Figure 5-22.	Station 62, Westport Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	66
Figure 5-23.	Station 63, Long Ledge, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	67

Figure 5-24.	Station 64, Long Ledge, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	67
Figure 5-25.	Station 65, Bluff Head, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	68
Figure 5-26.	Station 66-1 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	68
Figure 5-27.	Station 67, Cushman Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	69
Figure 5-28.	Station 68, Foxbird Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	69
Figure 5-29.	Station 73, Bailey Cove Outfall, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	70
Figure 5-30.	Station 74, Bailey Cove Outfall, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	70
Figure 5-31.	Station 77, Upper Bailey Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	71
Figure 5-32.	Station 85, South Bailey Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	71
Figure 5-33.	Station 99, North Bailey Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	72
Figure 5-34.	Station 101, Eaton Farm Bailey Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	72
Figure 5-35.	Station 105, Top of Bailey Cove, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	73
Figure 5-36.	Station 108, Bailey Point West, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	73
Figure 5-37.	Station 113, South Foxbird Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	74
Figure 5-38.	Station 117 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	74
Figure 5-39.	Station 118, Little Oak Island, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	75
Figure 5-40.	Station 134 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	75
Figure 5-41.	Station 143, Youngs Point, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	76
Figure 5-42.	Station 144, Oak Island Murphy Corner, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	76
Figure 5-43.	Station 145, Oak Island Murphy Corner, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	77
Figure 5-44.	Station 146, Darling Center, core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	77
Figure 5-45.	Station 147 core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	78
Figure 5-46.	Station 148 (Darling Center) core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	78
Figure 5-47.	Station 149 (Sasanoa) core: ⁶⁰ Co and ¹³⁷ Cs vs. depth	79
Figure 5-48.	Station 144 core: 210Pb vs. depth	79
Figure 5-49.	⁶⁰ Co Concentrations at 6 in. (pCi/kg)	
Figure 5-50.	¹³⁷ Cs Concentrations at 6 in. (pCi/kg)	81
Figure 5-51.	⁶⁰ Co Average Core Concentrations (pCi/kg)	
Figure 5-52.	¹³⁷ Cs Average Core Concentrations (pCi/kg)	
Figure 5-53.	⁶⁰ Co Surficial Concentrations (pCi/kg)	
Figure 5-54.	¹³⁷ Cs Surficial Concentrations (pCi/kg)	
Figure 5-55.	⁶⁰ Co Surficial Isocuric Concentrations (pCi/kg) - Close to Plant	
Figure 5-56.	¹³⁷ Cs Surficial Isocuric Concentrations (pCi/kg) - Close to Plant	
Figure 6-1.	Hot Particle Scan, 7 July 2004	
Figure 6-2.	Hot Particle Scan, 2 August 2004	

Figure 6-3.	Hot Particle Scan, 18 August 2004	104
Figure 6-4.	Hot Particle Scan Map	105

List of Tables

Table 3-1.	Number of Sediment Samples Collected for Maine Yankee in Phase 110		
Table 3-2.	Number of Sediment Samples Collected for Maine Yankee in Phase 2	10	
Table 3-3.	Species Selected For Biota Sampling	13	
Table 4-1.	According to model simulations, the percent of the total radionuclide released from the indicated location that is absorbed in the bottom sediment. The values were computed from simulations using velocities representative of spring tide conditions	47	
Table 5-1.	Sediment gamma scan results	88	
Table 5-2.	Summary of ¹³⁷ Cs peaks observed in cores.	98	
Table 5-3.	Total ⁶⁰ Co and ¹³⁷ Cs activity contained in cores	99	
Table 5-4.	Biota gamma scan results	100	
Table 5-5.	Comparison with Pre- and Post-operational study	101	
Table 5-6.	Results of the Hard to Detect Nuclides	101	
Table 7-1.	Calculated Doses Using Average Concentrations of Gamma Emitters	114	
Table 7-2.	Calculated Doses Using Peak Concentrations of Gamma Emitters	115	

List of Appendix Figures

Appendix Figure A-2. Channel network used for Montsweag Bay and Bailey Cove modeling. (Source: Churchill et al. 1980; Hess et al. 1983)	Appendix Figure A-1.	Project locus map (1978).	A-3
Appendix Figure A-3. Actual contours for ⁶⁰ Co measured on September 18, 1974 during licensed releases. A-4 Appendix Figure A-4. Actual contours for ⁶⁰ Co measured on June 12, 1975 during licensed releases. A-5 Appendix Figure A-5. Actual contours for measured ¹³⁷ Cs after Maine Yankee diffuser was in place (Hess et al. 1978). A-6 Appendix Figure A-6. Sample of currents at slack high tide (1978). A-7 Appendix Figure A-7. Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at high tide (1978). A-7 Appendix Figure A-8. Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-8 Appendix Figure A-9 Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-8 Appendix Figure A-10. Estimated ⁵⁸ Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-9 Appendix Figure A-11. Simulated contours for ¹³⁷ Cs concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-9 Appendix Figure A-12. Simulated contours for ⁵⁸ Co 17.5 hours after a release beginning at high tide (1978). A-9 Appendix Figure A-13. Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at high tide (1978). A-10	Appendix Figure A-2.	Channel network used for Montsweag Bay and Bailey Cove modeling. (Source: Churchill et al. 1980; Hess et al. 1983)	A-3
Appendix Figure A-4. Actual contours for ⁶⁰ Co measured on June 12, 1975 during licensed releases. A-5 Appendix Figure A-5. Actual contours for measured ¹³⁷ Cs after Maine Yankee diffuser was in place (Hess et al. 1978). A-6 Appendix Figure A-6. Sample of currents at slack high tide (1978). A-7 Appendix Figure A-7. Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at high tide (1978). A-7 Appendix Figure A-8. Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978). A-8 Appendix Figure A-8. Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-8 Appendix Figure A-9. Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (1978). A-8 Appendix Figure A-10. Estimated ⁵⁸ Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-9 Appendix Figure A-11. Simulated contours for ¹³⁷ Cs concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). A-9 Appendix Figure A-12. Simulated contours for ⁵⁸ Co 17.5 hours after a release beginning at high tide (1978). A-9 Appendix Figure A-13. Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at high tide (1978). A-10	Appendix Figure A-3.	Actual contours for ⁶⁰ Co measured on September 18, 1974 during licensed releases.	A-4
 Appendix Figure A-5. Actual contours for measured ¹³⁷Cs after Maine Yankee diffuser was in place (Hess et al. 1978). Appendix Figure A-6. Sample of currents at slack high tide (1978). Appendix Figure A-7. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at high tide (1978). Appendix Figure A-8. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-9 Estimated ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-11. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high tide (1978). 	Appendix Figure A-4.	Actual contours for ⁶⁰ Co measured on June 12, 1975 during licensed releases	A-5
 Appendix Figure A-6. Sample of currents at slack high tide (1978). Appendix Figure A-7. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at high tide (1978). Appendix Figure A-8. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-9 Estimated ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-11. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high tide (1978). 	Appendix Figure A-5.	Actual contours for measured ¹³⁷ Cs after Maine Yankee diffuser was in place (Hess et al. 1978).	A-6
 Appendix Figure A-7. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at high tide (1978). Appendix Figure A-8. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-9 Estimated ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-10. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978). Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high 	Appendix Figure A-6.	Sample of currents at slack high tide (1978).	A-7
Appendix Figure A-8.Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978).A-8Appendix Figure A-9Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (1978).A-8Appendix Figure A-10.Estimated ⁵⁸ Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978).A-9Appendix Figure A-11.Simulated contours for ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978).A-9Appendix Figure A-12.Simulated contours for ⁵⁸ Co 17.5 hours after a release beginning at high tide (1978).A-10Appendix Figure A-13.Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at highA-10	Appendix Figure A-7.	Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at high tide (1978).	A-7
Appendix Figure A-9Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (1978).A-8Appendix Figure A-10.Estimated ⁵⁸ Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978).A-9Appendix Figure A-11.Simulated contours for ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978).A-9Appendix Figure A-12.Simulated contours for ⁵⁸ Co 17.5 hours after a release beginning at high tide (1978).A-10Appendix Figure A-13.Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at high	Appendix Figure A-8.	Estimated ¹³⁷ Cs concentrations 4.38 hours after a release beginning at mid-ebb tide (1978)	A-8
 Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978). Appendix Figure A-11. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978). Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high 	Appendix Figure A-9	Estimated ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (1978).	A-8
 Appendix Figure A-11. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978)	Appendix Figure A-10.	Estimated ⁵⁸ Co concentrations 17.5 hours after a release beginning at mid-ebb tide (1978)	A-9
 Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978). Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high 	Appendix Figure A-11.	Simulated contours for ¹³⁷ Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978).	A-9
Appendix Figure A-13. Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at high	Appendix Figure A-12.	Simulated contours for ⁵⁸ Co 17.5 hours after a release beginning at high tide (1978).	A-10
tide (1978)A-11	Appendix Figure A-13.	Actual contours for ⁵⁸ Co measured after 17.5 hours beginning at high tide (1978)	A-11

List of Appendix Tables

Appendix Table A-1.	Pre-operational Laboratory Soil & Sediment Gamma Ray AnalysisA-12
Appendix Table A-2.	Post-operational Laboratory Soil & Sediment Gamma Ray Analysi

1. EXECUTIVE SUMMARY

1.1 CHARACTERIZATION OF RADIONUCLIDES IN THE BACK RIVER AND INTERTIDAL ZONE AROUND THE FORMER MAINE YANKEE NUCLEAR POWER PLANT SITE.

As a result of the closure and decommissioning of the Maine Yankee Nuclear Power Plant, and the 1999 Federal Energy Regulatory Commission (FERC) settlement, Maine Yankee agreed with Raymond Shadis, Executive Director of Friends of the Coast (FOTC), to fund and conduct an environmental field survey of marine sediments in the Back River. The purpose of the study was to determine how licensed liquid radioactive effluent discharges from Maine Yankee are distributed in the environment. In the 2001 License Termination Plan (LTP) settlement, Maine Yankee further agreed to conduct a similar study in the intertidal zone surrounding selected portions of Maine Yankee property. By separate agreement, the State of Maine, subject to approval of FOTC, specified various aspects of the sampling program.

Researchers from the University of Maine, the Woods Hole Oceanographic Institute, and Normandeau Associates performed the study. The majority of samples were taken during the summer of 2004 after the final discharge of the plant's spent fuel pool. This report characterizes radionuclides in the marine environment around Maine Yankee and describes the methodologies used in the study. Four sets of sampling were accomplished to complete this study. The results of each type of sampling are provided and are compared with a model of radionuclide distribution from licensed discharges. Additionally, the results are compared to previous work done in the area both pre and post plant operation. The results are also used to calculate an incremental intertidal zone dose, which is compared to the limiting "resident farmer dose calculations in the License Termination Plan for Bailey Point post-decommissioning." Maine Yankee operated from 1972-1996. Plant decommissioning is scheduled to be complete in late spring of 2005.

This sampling effort included a search for areas high in nuclear radiation (hot particle search), samples from the surface of the tidal region, core samples from the tidal region, and samples of biota including seaweed, lobsters, mussels, and fish. The results are discussed in this order. In all, about 600 samples from 147 locations were collected and analyzed. To ensure that the sampling effort was as comprehensive and efficient as possible, a model was used to determine the best locations. The results of this effort are summarized here.

Before any sample collection, a model of the bay was developed to determine the effect of tidal influences on releases of radioisotopes. The model takes into account the action of the tides, the flow of water, and the discharges from various points. The work was necessary due to the changes made over time to the plant. In particular, three different discharge points were used as well as the removal of a causeway over the lifetime of the plant. A theoretical model was developed to determine the location of the hottest zones for radioisotopes. This model was tested using floats to validate the results. The predictions of the model became the points for the first sampling effort. After measuring this first set and refining the model, a second sampling effort was accomplished based on the results of the first set. In this manner, a coordinated study was possible.

The first results to discuss involve the search for localized areas high in radiation. To accomplish this goal, an instrument which measures radiation exposure called a High Pressure Ion

Chamber (HPIC) was used. The HPIC was placed on a sled and dragged across the mud flats at low tide. Three sets of measurements were taken. These sets were placed so that the HPIC system would pass close to the discharge points. If a single measurement of three times background was found, the HPIC would signal the researchers that a hot spot was found. No such measurement was found. In fact, the exposure seen away from shore was, in general, less than the background seen on shore. We feel this is due to the mixing of the sediment due to the action of tides and the turnover of sediment due to digging (clam or worm digging).

The next set of results involves the analysis of the samples taken from the surface of the intertidal zone. These samples were analyzed for certain radioisotopes associated with nuclear fission including ¹³⁷Cs and ⁶⁰Co. As expected, these were the predominate radioisotopes seen. The results were compared to measurements taken earlier. In general, the values seen are lower than before the plant was brought on line. We feel that the reason the values are so low is due to a mixing within the tidal flat, lowering the amount of radiation seen on the surface. The distribution of the Cesium and Cobalt is also consistent with the history of discharges. The Cobalt is highest near the recently used diffuser. Since Cobalt has a relatively short half-life, we expected to see very low levels at locations where discharges were stopped and highest where discharges were done more recently. Cesium, with a longer half-life, should be higher at locations that had more discharges. Overall the greatest concentration of plant derived radionuclides is in Bailey Cove and the area of the diffuser. Bailey Cove was the original plant discharge location prior to installation of the diffuser. The distribution is consistent with these assumptions.

As well as surface samples, cores were also taken, sectioned, and counted. The results show that the overall radiation is low. An individual core was sectioned and counted to determine how far into the soil the highest level of radiation exists. Most radiation was found below the surface, which is consistent with results from surface samples. Again, the data indicates that a mixing of the soil is occurring so that radioisotopes are distributed and do not remain localized.

In comparison, naturally occurring radionuclides such as ⁴⁰K are found at higher levels in the marine environment than either Cesium or Cobalt. The average naturally occurring Potassium concentration was about 10 pCi/g, which results in an exposure rate of approximately 8 mrem/yr. The average Cesium or Cobalt concentration was about 0.073 pCi/g or 0.019 pCi/g which results in an exposure rate approximately 0.17 mrem/yr or 0.13 mrem/yr, respectively using NRC approved soil screening values.

Last, several biota samples were taken and analyzed. These samples included lobsters, clams, mussels, seaweed and fish. The samples were crushed and analyzed for the same radioisotopes as above. For the shellfish, the shells were counted separately from the meat. Additionally, these samples were sent to another laboratory to search for radioisotopes, such as Beta emitters and Plutonium, which are difficult to measure (hard to detects). The results show that all levels are very low, including the hard to detect values.

As a final calculation, the results of the above samples were used to calculate the average and peak doses that an individual would receive if they stood on the tidal flat went swimming, went fishing, harvested seaweed, or ingested the biota. The results range between 3 mrem/yr for land reclamation to 2.6×10^{-3} mrem/yr for swimming. Such exposures are a small fraction of normal exposures received naturally through a year. The low exposures are indicative of the low values seen in the data sets.

2. PURPOSE OF THE MARINE SAMPLING STUDY

In accordance with agreements with the Friends of the Coast and the State of Maine, Maine Yankee established a contract with the University of Maine, Wood's Hole Oceanographic Institute and Normandeau Associates to conduct a radiological sampling and analysis study of the marine environment surrounding the Maine Yankee site. The purpose of this study is to:

- 1. Develop an isotopic (isocuric) picture of how licensed discharges are spatially distributed and accumulated in the environment.
- 2. Develop information which will be used to educated the public and enhance public confidence in the decommissioning process. This information includes:
 - a. A report of measured radiological concentrations in marine sediment and selected marine biota in the environs surrounding the Maine Yankee site concentrations in Bailey Cove performed by a third-party-contractor..
 - b. A dose assessment of these measured radiological concentrations

3. FIELD SAMPLING

The first sampling survey, Phase 1, entailed acquiring sediment samples over a broad region, including farfield locations and focusing on those areas identified by the numerical modeling as potential regions of sediment and radionuclide accumulation (Figures 3-1, 3-2, 3-3). During this phase, we conducted an intertidal search for particularly radioactive, "hot", particles, and acquired samples of flora and fauna. This was followed by the more intensive Phase 2 survey with concentrated sampling in those areas identified to be of particular interest on the basis of the results of the first survey, and further guided by additional modeling (Figures 3-4, 3-5). We collected 398 sediment samples as part of this later survey. To ensure that the samples collected by these surveys were counted in a timely fashion, sufficient to guide the ensuing surveys, we employed three gamma counting devices available at the University of Maine, Orono.

Field sampling was conducted in both intertidal and subtidal areas, each with its own protocol. Surface and subsurface (core) marine sediment samples were collected in each area. Numbers of samples are listed in Table 3-1. These include a four-way split for 10% of the samples, which was accomplished by collecting four duplicate samples and delivering one set of duplicates to Maine Yankee, one set to the State of Maine, and one set to Friends of the Coast. Additional sediment samples were collected at the request of Friends of the Coast in farfield locations including Pottle Cove near Wiscasset Harbor, the "Eddy", Robin Hood Cove, and the Sasanoa River (Station 149) (Figure 3-2). Background sediment samples were collected in Taunton Bay, Clarks Cove at the Darling Center (Station 148) in Damariscotta Bay (Figure 3-1).

The Phase 1 survey was conducted July 6, 7 and 8, 2004. Phase 2 was conducted on August 2 -5 and September 16-17, 2004. In accordance with our overall project plan, we designed the Phase 1 survey on the basis of modeling results and the findings of previous studies. This design is described in the next section. The Phase 2 survey was designed based on the Phase 1 results and additional modeling.

All field sampling was conducted in an environmentally conscientious manner. Access was either at public boat launches or by foot along pathways used by harvesters. Only abundant organisms were collected. Every effort was made to minimize disturbance to the marine environment during sampling.

3.1 SEDIMENT SAMPLING

3.1.1 Phase 1

The locations of the Phase 1 sediment sampling sites (Figure 3-3) were based on hydrodynamic modeling (Section 4.0) of the estuarine system that includes the Maine Yankee discharge, and on the results of previous measurements of radionuclide concentration in the area near the discharge. This tests how well the model predicts the location of nuclides in sediment. The initial modeling results revealed that the Maine Yankee discharge is located roughly a kilometer north of a tidal node. As a result, tidal currents in the area of the discharge are relatively weak and tidal excursions are small (on the order of 500 m). Tracking of particles released from the discharge location into the model flow field indicates that material released from the discharge should not be expected to travel very far over the course of a tide, even for spring tide conditions with maximum

Figure 3-1. Project location and background locations.

9

Figure 3-2. Project locus map and farfield sampling locations.

Maine Yankee Final.doc 02/15/05

-

Figure 3-3. Phase 1 station locations

 ∞

Figure 3-4. Phase 2 station locations around Little Oak and Foxbird Island.

9

Figure 3-5. Phase 2 station locations north and South of Little Oak and Foxbird Islands.

riverine inflow. The model results also indicate a northward bias in the transport of material released from the diffuser, due to the asymmetry of the tidal flow moving northward of the tidal node.

These results are consistent with the findings of previous radionuclide surveys conducted in the region. In particular, the study conducted in 1978 found that radionuclide (137 Cs and 58 Co)

 Table 3-1.
 Number of Sediment Samples Collected for Maine Yankee in Phase 1

Sample Location	Sample Type	Regular	Duplicate	Total
Intertidal	surface	50	12	62
	core	5	6	11
Subtidal	surface	8	3	11
	core	2*	3	5
Additional cores		4		4
Farfield (Taunton & Darling Ctr)		2		2
Total		74	24	95
	73	surface		
Total Phase 1 samples collected for counting	192	core slices		

*One core not collected due to unsuitable substrate

Table 3-2.	Number of Sediment Samp	les Collected for	[•] Maine Yankee in Phase 2
------------	-------------------------	-------------------	--------------------------------------

Sample location	Sample Type Actual Duplicat		Duplicate	Total
Intertidal	surface	75	18 93	
	core	18	6	24
subtidal	surface	0	0	0
	core	9	3	12
				0
Total stations		102	27	129
Total samples collected for analysis (including all core slices)				

concentrations in Back River were above background over a relatively small region, extending roughly 1-2 km from the diffuser, and that this region was biased (extended further from the diffuser) to the north of the diffuser (Hess et al., 1983). This survey also found significant radionuclide concentrations in the sediments of Bailey Cove, likely due to a combination of accumulation from early discharges into Bailey Cove and from the later diffuser discharges. Given the weak tidal energy of this area, we expected much of the radionuclide containing sediment of Bailey Cove to remain within the Cove.

Based on the initial hydrodynamic results, we focused much of our Phase 1 sampling in the area of Bailey Cove and in the region of Back River near the diffuser location (Figure 3-3). In hopes of determining the horizon of detectable radionuclide concentrations, we also set sampling locations

further south (into Montsweag Bay), further north in Back River (into Cushman Cove), and into tributary regions of Chewonki Creek and Montsweag Brook. We have identified 5 locations at which core samples were acquired, and later sectioned and analyzed. Analysis of a core sample acquired in February 2004 near the plant intake has shown highest radionuclide concentration at 6 cm depth. For this reason, we acquired core samples from at least 10 additional sites to be set aside for possible analysis, depending on the results of the core samples from the 5 sites designated for analysis.

Details of the sampling collection method follow.

3.1.1.1 Intertidal Surface

Intertidal sediment samples were collected on foot at low tide. Staff made collections in areas accessible from the shore by traversing the area on foot using existing pathways. Collections in areas that were inaccessible by foot (such as Back River and around Little Oak Island) were made by deploying staff at Little Oak Island via boat. Field staff first marked sampling locations for that tide cycle using a wire stake marked with the station number. Staff navigated to the approximate station location using the map and visual cues, and then marked the sampling site. One staff member recorded GPS coordinates as well as reference areas so that the exact location of the sample sites was known. The surficial sediment samples were collected at pre-established locations by removing the top centimeter of sediment from an approximately 32 X 32 cm square with a trowel and depositing the sample in a pre-labeled polyethylene jar, with internal and external labeling. Each marker stake was removed and brought back to the office when the sample had been collected. Samples were kept cool until transport to the laboratory.

3.1.1.2 Intertidal Subsurface

Intertidal subsurface sediment samples were collected in the same manner as intertidal surface samples but using a different device. A four-inch diameter pre-labeled Plexiglas core was deployed by hand to a depth of 12 inches (or refusal) in areas selected for subsurface sampling. The core was capped at both ends, then placed in a pre-labeled plastic bag and stored upright. Samples were kept cool until transport to the laboratory. The core was inspected visually both after sample collection and prior to slicing to ensure that the integrity of the core had been maintained. Samples were discarded if it is determined that the integrity had not been maintained. Each core was sliced using a core slicer into one-inch samples. One-inch layers were extruded from the end of the core and captured with a bucket, then placed into a pre-labeled container. Excessive water in the sediment sample was drained if necessary to maintain the integrity of the sediment.

3.1.1.3 Subtidal Surface

Subtidal sediment samples were collected from a boat using a 0.04 m^2 Young-Van Veen grab. The locations of the subtidal samples are shown in Figure 3-1. The boat captain occupied the approximate location of each station using a navigational chart, fathometer, and GPS. The location was adjusted if necessary to ensure that samples can be safely collected and consist of soft substrate. Each grab was deployed and retrieved; surface sediment (< 1 cm depth) was removed from the grab and placed in a pre-labeled polyethylene jar, with internal and external labeling. The GPS coordinates were checked, the boat was relocated if necessary, and the Van Veen grab was redeployed. This process continued until sufficient sediment was collected. Samples were kept cool until transport to the laboratory.

3.1.1.4 Subtidal Subsurface

Subtidal subsurface sediment samples were collected using a gravity corer. The approximate locations of the subtidal samples are shown in Figure 3-3. The boat captain occupied the approximate location of each station using a navigational chart, fathometer, and GPS. Each core was deployed and one-inch layers of the sediment were retrieved, placed in a pre-labeled polyethylene jar, with internal and external labeling. Samples were kept cool until transport to the laboratory.

3.1.2 Phase II

The results of Phase I revealed concentrations of radionuclides at depth. The project team recommended that some of the surface samples be replaced with core samples. With Maine Yankee's approval, the samples listed in Table 3-2 and shown in Figures 3-4 and 3-5 were collected.

3.1.2.1 Intertidal Surface and Subsurface

This protocol was the same as for Phase I except that a hand held Magellan GPS was used to record sample locations.

3.1.2.2 Subtidal Surface and Subsurface

This protocol was the same as for Phase I.

3.1.3 Hard to Detect

Hard to detect samples were selected from the highest gamma scan samples for measurement of the hard-to detect nuclides. These were sent out to Duke Framatome ANP

3.2 GAMMA SCAN OF INTERTIDAL ZONE

An in situ gamma scan was conducted after the first phase of sampling was completed. The goal was to ascertain if there are any "hot particles" (defined as >100,000 cpm) in the intertidal areas. The initial survey, in addition to information from previous studies, helped focus this effort on most likely areas of deposition. The effort concentrated on the shoreline adjacent to Maine Yankee. Field staff traversed a 2-m strip encompassing roughly 207 m of shoreline in Bailey Cove and a 1-m strip encompassing roughly 1260 m of shoreline in Back River, resulting in 1674 square meters in total. Areas around the intake, forebay, and diffuser discharge are the most important.

Hot particle measurements were done by the high-pressure ion chamber, capable of measuring microrems/hour, and a three inch by three inch sodium iodide detector and laptop PC with a pulse height analyzer board mounted on a kayak-sled for transport over the wet sediment. The sensitivity of the system allows detection of a one microcurie source at one meter distance, and 0.03 microcuries is detected at 30 cm. Test of the sensitivity has been done by calculation and by actual measurements on land with buried test sources of ⁶⁰Co, and ¹³⁷Cs. This sled also had a portable GPS unit to measure position as a function of radioactivity. The sled was moved over the intertidal zone areas for direct measurement of hot particles. If a hot particle had been discovered, we would have flagged the area with a survey stake and recorded its location with GPS, then contacted Maine Yankee. Work would have continued unless an unsafe level is discovered (defined as three times the background level.

3.3 BIOTA SAMPLE COLLECTION

Five species were initially selected for dose pathway estimation based on their likely anticipated contribution to dose pathways as well as anticipated seasonal availability and abundance, based on a review of available literature (Larson, P.F. 1975; Larson, P.F. and Doggett, L 1991; Larson, P.F., Doggett, L. and A.C. Johnson. 1983; Maine Yankee 1978, 1994, 2002). The pathways to be investigated included direct exposure through harvesting activities (algae, soft-shell clam) and direct exposure through consumption (soft-shell clam, lobster, winter flounder) as shown in Table 3-3. These species give highest priority to sessile species (which are subject to continuous input), harvested species, and highest bioaccumulators (those higher in the trophic level that are consumed by humans). Preliminarily, we assumed these to be seaweed (*Ascophyllum nodosum* or *Fucus* spp.), soft-shell clams (*Mya arenaria*), blue mussels (*Mytilus edulis*), lobster (*Homarus americanus*), and winter flounder (*Pleuronectes americanus*). Clam and blood worms were also considered for dose pathway estimation but, since soft-shell clams have two possible pathways (contact and ingestion), they were thought to be a better choice.

Pathway	Primary species	Organism type	Alternative
Direct contact through collection Consumption Fertilizer Use	Rockweed	Algae	none
Direct contact through collection Consumption Fertilizer Use of Shell	Blue Mussel	filter feeding bivalve	consider periwinkles (Littorina spp.) as possible substitute even though not a filter feeder
Direct contact through collection, human Consumption Fertilizer Use of Shell	Soft-shell clam	deposit feeding bivalve	none
Human consumption	Winter flounder	demersal fish	smooth flounder
Human consumption	Lobsters	demersal feeding crustacean	rock crab

 Table 3-3.
 Species Selected For Biota Sampling

Biotic samples of commercially-harvested species (soft-shell clams, and lobster) were obtained directly from harvesters in Bailey Cove (clams) and the Back River (lobsters). Blue mussels and algae were collected at Little Oak Island. Fish (winter flounder and hake) were collected by otter trawl in Back River near Maine Yankee. At least 2.3 kg (five pounds) of lobster and fish were collected; at least 2000 grams of seaweed (4.4 lb.) Clams and mussels were shucked and the edible tissue was macerated in a food processor, with sufficient sample to provide 910 g (2 lb) of wet weight tissue material. Shells were counted as separate samples. Sufficient material was collected in 10% of the samples (determined randomly in advance of sampling) to allow them to be split four ways. Lobster meat was restricted to tail and claw meat, the most commonly consumed tissue. The lobster hepatopancreas (tomalley) is known to accumulate organic contaminants, but there is no evidence that radionuclides would be selectively accumulated in any organ of the lobster. All samples were kept cool until returned to the laboratory where they were frozen in doubled plastic bags with proper indelible internal identification sandwiched between the two bags. As finfish were not of sufficient size to fillet, they were frozen whole. Biota for background measurements were collected the Darling Center in Damariscotta and in South Portland.

3.4 QUALITY CONTROL

Samples have been archived until delivery of this final report. Cross contamination was prevented using individual sample collection devices or by washing with water to remove sediment particles between sample collections.

3.4.1 Sample Tracking and Custody

Tracking and custody of samples in the field was the responsibility of the Normandeau's Field Operations Manager. To ensure proper handling and identification of samples, they were labeled and packaged for shipment as they were collected in the field, or immediately upon returning to the field laboratory. Forms and containers specific to the task were used to ease handling and assure safety of the samples. Appropriate sections of each form were completed in the field and in each subsequent step of the process.

Sample control was accomplished by assigning unique numbers to each sample collected. These numbers were obtained from Normandeau's Quality Assurance Department. In preparation for a collecting trip, a Field Card/Sample Submittal Form(s) was completed for each set of samples taken: Following the sampling event, the field cards were checked to insure that they were completely and correctly filled out. The samples were checked to insure that sample labels were properly filled out with correct sample control numbers are attached Originals of the sample submittal forms were reviewed and put into a fire proof vault at Normandeau-Yarmouth for the Senior Field Biologist's or designee's review. Copies of the original field cards were sent with the samples to the appropriate laboratory.(in this case University of Maine, Maine Yankee, State of Maine, or Friends of the Coast).

3.4.2 Sample Storage and Transfer

Sediment samples were kept cool and transferred as soon as feasible to the University of Maine Department of Physics and Astronomy (or, in the case of duplicates, Maine Yankee, State of Maine, or Friends of the Coast), for gamma scans. Biotic samples were frozen, then sent to University of Maine or, in the case of duplicates, Maine Yankee, State of Maine, or Friends of the Coast . Chain of custody was implemented with documentation and labeling of containers in advance and following the handling to the end of the measurement. Copies of the chain of custody forms accompanied all samples, with the original retained at Normandeau-Yarmouth.

3.5 LABORATORY ANALYSIS

3.5.1 Gamma Screening

The surficial samples and core samples were gamma scanned at the Environmental Radiation Laboratory at the University Department of Physics and Astronomy. Gamma ray counting was done with three Canberra high purity Ge detectors and three 1000 kg low background lead shields. Data were collected using Ace computer boards, and Trump software from Ortec and Gamma Track by Nucleus. The Physics Department's detectors have been intercalibrated with the U.S.EPA National Exposure Research Lab in Las Vegas Nevada for Gammas in Water. Count times varied from four hours to 24 hours depending upon the concentration of radionuclides and interest in a particular sample. Chain of custody was preserved for all samples with labels and documentation in bound notebooks. Gamma ray spectra were analyzed using custom software which has been tailored to very low level counts (much less than Compton background, such as the expected counts at the bottom of the cores).

Isocuric plots were generated from the gamma scan results for the appropriate nuclides found in the samples. In those instances where it is possible, new samples were compared to archived data and samples from previous studies. This step enabled a quantitative before and after comparison of radionuclides levels in the sediments.

Detected hot particles in samples would have been tested by portable counter shielded if the dose on surface exceeded 1mr/h using lead or other sediment samples. However, no hot particles were detected.

3.5.2 Lead-210 and Cs-137 Dating

²¹⁰Pb and ¹³⁷Cs quantitative counting of samples was done, although dating can be done using raw counts/sec kg in a Canberra high purity Ge well counter in a 2600 pound tin and copper graded lead shield.

3.5.3 Hard to Detects

Hard to detect radionuclides were measured in an external laboratory (Duke Framatome ANP) including ^{238/239}Pu, ⁶³Ni, ⁵⁵Fe, and ⁹⁰Sr. These had required minimum detectable concentration of 1, 20, 5, 5 pCi/g respectively. The samples were selected from the highest gamma ray anaylsis samples. When the highest gamma sample could not be determined (lower than detectable), diffuser samples near Bailey Cove were used.

3.5.4 Quality Control

Samples were measured in a standard geometry, a one liter wide mouth high-density polyethylene Nalgene bottles. This geometry was calibrated utilizing U.S. EPA liquid gamma ray standards from the EPA national exposure research laboratory RADQA program in Las Vegas, Nevada. The initial counting of sediment samples and biota were done wet to speed up the measurements. Detection capabilities conformed to the lower limits of detection specified by the Maine Yankee Atomic Power Company Off-site Dose Calculation Manual Table 2.4. The radionuclides ⁵⁸Co and ⁶⁰Co have a MDA specification of 130 pCi/kg concentration for fish and invertebrates and ¹³⁴Cs and ¹³⁷Cs have 130 and 150 pCi/kg. The standardization of our geometry used for Ge detector's involved the use of several standards including ¹³³Ba, ¹³⁷Cs, ⁶⁰Co, and ²²⁶Ra. Larger Marinelli geometries are also available.

3.5.5. Sample Disposal

All samples taken will be archived until delivery of report and acceptance by Maine Yankee and disposed of by subcontractor in accordance with applicable regulations. University of Maine has a general license for radionuclides, including waste disposal capability.

3.5.6 Safety

Personnel had radiation safety training and were film badged for work which may have a hot particle nearby. Portable radiation detection meters were taken in the field for sampling. Health and safety training was included in previous documents submitted with the proposal.

3.5.7 Quality Assurance

Samples were collected under the Normandeau QA plan, were counted under the University of Maine QA plan, and modeled under the Churchill quality assurance modeling plan. Framatome was responsible for its QA plan.

3.5.8 Background Measurements

Sediment background samples were taken from Taunton Bay, Clark Cove, and Damariscotta Bay (Station 148), and Sheepscot Bay. Background biota samples were collected from South Portland and Damariscotta Bay. Every effort was made to collect all of the same species collected at Maine Yankee. These samples determined background values of nuclides.

4. NUMERICAL MODELING OF FLOWS AND RADIONUCLIDE TRANSPORT IN THE SHEEPSCOT RIVER ESTUARINE SYSTEM

4.1 INTRODUCTION

The modeling component of our project served two primary purposes. One was to examine the flow dynamics of the Sheepscot River estuarine system, which received cooling water and discharged radionuclides from the Maine Yankee nuclear power facility. The second was to study the transport of radionuclides through the estuarine system and the incorporation of these radionuclides into bottom sediments. Modeling results were used in both the planning and data interpretation phases of our project. In planning the project's sediment surveys, model results were used to set geographic bounds for the sample locations. In interpreting the radionuclide concentrations obtained from the surveys, we used the model results to assess the extent to which sediment-bound radionuclides may have been transported after their initial incorporation into the bottom sediment.

Our modeling package consisted of two coupled numerical routines. One was a hydrodynamic model that simulated the flows in Sheepscot River estuary for a given set of tidal conditions. The second was a modified "water quality model". This used the time varying flow field of the hydrodynamic model to simulate the transport of discharged radionuclides and estimate the pattern of radionuclide incorporation into the bottom sediment of the Sheepscot estuarine system.

The modeling effort was carried out in phases. The first phase entailed constructing model grids, of increasing levels of complexity, and conducting numerical integrity tests of the hydrodynamic model. In the second phase, we focused on the dynamics of the Sheepscot River estuarine system. The model results were employed to examine aspects of the dynamics expected to impact the transport of radionuclides discharged from the Maine Yankee facility. As part of this phase, we also carried out a field evaluation of the model. This entailed releasing drifters at various tidal phases near the diffuser location, as well as monitoring the water level in Bailey Cove over two tidal cycles. In our third, and final, modeling phase, we used the water quality model to simulate the movement of plant-discharged radionuclides throughout the estuary and the initial incorporation of these radionuclides into bottom sediments. Among the products produced by the model were geographic plots of radionuclide concentrations in bottom sediments resulting from large historical releases. These were used in the interpretation of the results our sediment radiological surveys.

In the remainder of this section we offer brief descriptions of the hydrodynamic and water quality models, and discuss the findings from these models in some detail. We also describe the model evaluation field study carried out in early July 2004.

4.2 HYDRODYNAMIC MODELING

4.2.1 Model Description

Simulation of flows within the Sheepscot River estuarine system was done using the hydrodynamic model DYNHYD. This numerical model has a history of application in estuarine studies dating from the 1970's (Feigner and Harris, 1970). It has been used to simulate flows near the Maine Yankee power plant in previous studies reported by Churchill *et al.* (1980) and Hess *et al.* (1983).

A principal simplifying assumption of the model is that velocities and water properties are vertically uniform. Simulation of flows within an estuary is carried out by numerically integrating the equations of continuity and motion, expressed in a finite difference form, using a Runge-Kutta technique. This calculation is done within the framework of a grid that segments the volume of an estuary into a series of channels and connecting junctions. The channels are assumed to be flat bottomed and of rectangular cross-section. Properties assigned to each channel are length, width and a "Manning" friction coefficient. Throughout a tidal cycle, the channel length and width remain constant, while the channel cross-sectional area and hydraulic radius (depth of water) vary with the changing water level. Model output includes time series of vertically averaged velocities and hydraulic radii for each channel. The mean water level of each junction, relative to a horizontal datum, is also output by the program.

Application of DYNHYD to the waters near the Maine Yankee facility required modification of the program to allow for drying of channels. This modification and other details of the program's operation are described by Churchill *et al.* (1980) and Hess *et al.* (1983).

In generating the model results to be shown in ensuing sections, we forced the model flow though two mechanisms: changes in tidal elevation at the boundary of the model grid, and inflow and outflow at specified model junctions. To account for the impact of the power plant's operation, a steady inflow was specified at a junction coincident with the cooling water intake and a steady outflow was specified at one of the discharge locations: the outflow into Bailey Cove and the diffuser in the Back River. For runs aimed at modeling flows during the decommissioning period after the plant shutdown, a steady outflow was specified at the location of the waste water discharge near Little Oak Island. The influx of freshwater to the Sheepscot River estuary was accounted for in some runs by specifying an influx at a model grid's northern most (most inshore) junction.

In specifying the changes of tidal elevation at the seaward boundary of the model domain, we made use of the *Eastcoast* 2001 data base of tidal constituents recently developed for the U.S. Army Corps of Engineers and described by Mukai *et al.* (2001). This data base allows a user to compute the tidal elevation for a given time window and at any given location within a domain that includes western North Atlantic. It was derived in the manner described by Westerink *et al.* (1994) by applying the hydrodynamic model ADCIRC (Luettich *et al.*, 1992) to a domain comprised of the western North Atlantic, the Gulf of Mexico and the Caribbean Sea. Using the *Eastcoast* 2001 data base and a Fortran routine supplied by Dr. Richard Luettich of the University of North Carolina, we specified tidal elevation series at the location of the model grid's southern most junction for a number of different time periods.

We should emphasize that by today's standards, DYNHYD is relatively crude. The most advanced of the current generation of estuarine models typically represent velocities and water properties as 3-dimensional fields and have highly refined methods for determination of bottom friction. The principal advantages of DYNHYD over this class of models are in its ease of implementation, speed of operation and numerical stability. As will be shown below, DYNHYD provided a useful, albeit imperfect, view of the dynamics of the Sheepscot River estuarine system.

4.2.2 Model Grid Generation

Hydrodynamics of waters near the Maine Yankee power plant have been modeled in three previous studies; two with the use of DYNHYD (Churchill *et al.*, 1980 and Hess *et al.*, 1983) and the third with the use of finite element numerical model (Law, 1979). In all of these studies, only a small

portion of the Sheepscot River estuarine system was included in the simulation. In no study did the model domain extend beyond the diffuser location by more than 6 km to the south or 3 km to the north. Although useful, the previous model results offered little insight into the workings of the entire estuarine system and how the larger scale system dynamics may have impacted the movement of radionuclides discharged from the power plant. For this reason, we chose to extend the model domain of this study over the entire Sheepscot River estuarine system.

Generation of the model grid was accomplished using routines executed in MATLAB programming environment. The procedure was carried out in a number of steps with the user working with the cursor on an electronic chart of Sheepscot River estuary. In the first step, the user specified the center location of each of the grid's junctions (by "left clicking" at the desired cursor location). In the second step, the user connected the junctions with channels. Marking of channel edges and specification of junction depths (relative to mean low water) were accomplished in subsequent steps. The final step entailed specifying junction area. For a particular junction, this could be set equal to the half the sum of the channels entering the junction or to the area of a polygon whose edges were specified by the user (again, by left clicking on desired vertex locations). Routines were also written for editing a particular grid, allowing for deletion or insertion of channels and junctions. Throughout the course of our study, the grid was expanded in steps, with detail added in areas deemed likely to receive plant discharged radionuclides based on results from the soon to be replaced model grid.

The final grid (Figures 4-1 and 4-2) consists of 301 channels and 228 junctions. It is highly resolved in areas considered likely to receive discharged radionuclides in high concentration. This includes Bailey Cove and a portion of the Back River and Montsweag Bay extending roughly 2 km north and 1 km south of the diffuser location. The skewing of this area of high grid resolution relative to the diffuser is consequence of the system dynamics, which will be discussed in the next section. While the grid encompasses most of the closed channels and embayments of the Sheepscot River estuarine system, it does not extend into the adjacent Kennebec River, which is connected to the Sheepscot River system is highly complicated and could not have been adequately modeled within the time frame of our project.

4.2.3 Model Results

As noted above, the model was forced by changes in tidal elevation applied at the most seaward boundary (identified in Figure 4-2). Spring, neap and intermediate tidal conditions were simulated. An examination of the model results has revealed two important phenomena that had not been identified by previous studies, but which are expected to have a significant impact on the transport and redistribution of radionuclides discharged from the Maine Yankee facility. One is a tidal node located a short distance south of the diffuser location, and the other is an asymmetry of the tidal flow within Bailey Cove. In this section we examine the details of these phenomena as revealed by the model results.

From a simple examination of nautical charts, an astute navigator or a reasonably alert student of hydrodynamics, would infer the likelihood of a tidal node somewhere in the Sheepscot River estuarine system. Such an observer would note that the deepest channels of the system encircle the system's largest island, Westport Island (Figures 4-1 and 4-2). He or she may then imagine the path of a tidal crest entering the system from the Sheepscot River mouth. At the southern

Figure 4-1. The final version of the grid used for the hydrodynamic and radionuclide models.

Figure 4-2a. Same as Figure 4-1 except showing the model grid over plain land and water fields. Indicated is the boundary junction at which the offshore forcing, in the form of a tidal elevation series, is applied. Also indicated is the Sasanoa River, which is a principal opening to the modeled system not accounted for by the grid.

Figure 4-2b. The section of the model grid with the highest resolution.

end of Westport Island, the path this crest would be expected to split into two alternate routes: one moving northward through the Sheepscot River along the eastern shore of Westport Island and the other traveling northward through the series of bays and rivers that abut the western shore of Westport Island. Somewhere along the island, the two crests would recombine to form a tidal node. Our perceptive observer would predict that tidal velocities would be particularly weak at the location of the node. The reasoning would be that the tidal velocities are forced principally be gradients of the tidal elevation, which tend to be largest in the along-channel direction. The elevation of the two tidal waves meeting at the node should be roughly equal, giving a small (or nearly zero) elevation gradient at the node.

To examine the manner in which the tide propagates though the channels ringing Westport Island, we computed the total volume transported by the incoming tide flow through the model channels surrounding the island. This was determined as

$$T = \int_{t0}^{t0+t1} V(t) dt$$

where *t* is time and V(t) is the channel volume transport defined as

$$V(t) = D(t)v(t)W$$

where D(t) is the time varying water depth in the channel, v(t) is the modeled channel velocity and W is the channel width. The integral for the volume transported, T, is carried out over the period of the incoming tide (from t0 to t0+t1). A plot of flood-tide transport in selected channels (Figures 4-3a,b,c) shows the splitting and recombining of the transport in the channels abutting Westport Island. The principal schism occurs at the southern end of Westport Island where the incoming transport divides into two main streams. One heads into the estuarine region to the west of the island, while the other, larger, stream moves up the main channel of the Sheepscot to the east of the island. At the northern tip of the island, this latter stream splits again with one branch moving southward along the western shore of Westport Island. This branch continues past the location of the diffuser discharge. It then meets the northward moving stream it had parted with at the southern end of Westport Island. According to the model, this point where the flood tide streams encounter one another is roughly 1 km south of the diffuser.

To examine the effect of the splitting of tidal flows around Westport Island on tidal energy, we computed of root mean square (RMS) value of volume transport through the model channels over the course of a tidal cycle. This was computed according to

$$RMS(V) = \sqrt{\frac{1}{t2} \int_{t0}^{t0+t^2} V^2(t) dt}$$

where RMS(V) is the root mean square of the volume transport in the channel over the course of a tidal cycle that extends from t0 to t0+t2. This quantity (hereafter, RMS tidal transport) is proportional to the square root of tidal energy in a model channel. According to the model, the RMS tidal transport varies over two orders of magnitude in the channels surrounding Westport Island (Figures 4-4a,b). It exhibits a very deep minimum in the area of the tidal node, roughly 1 km to the south of the diffuser. At the diffuser location, the RMS tidal transport is only slightly greater than its minimum and is dwarfed by the RMS tidal transport on the other side of Westport Island, by more than an order of magnitude.

One may question why the flood tide stream that initially moves up the main channel of the Sheepscot manages to cover so much more distance than it weaker brother stream before reaching their collision point. It's because this faster stream passes through a much deeper part of the system than its slower counterpart. The phase velocity of the tidal wave is proportional to the square root of channel depth, and so the location of the point where the model tidal waves meet, and produce the tidal energy minimum, is determined by the depths of the model channels. Accurately predicting this location in the model is principally dependent on properly specifying the main channel depths on either side of Westport Island.

As would be expected, the tidal excursions (the distances a particle moves from low to high tide, or vice-versa) are very small in the area of the tidal node and tend to increase dramatically moving away from the node. Here we show tidal excursions computed for neap-tide conditions

Flood Tide Transports

Figure 4-3a. The volume transport over a flood tide through selected model channels. The transports show the splitting of the incoming tidal flow near the southern end of Westport Island and a minimum of tidal flow at the tidal node, where two opposing streams meet, a few km south of the diffuser location.

Flood Tide Transports

Figure 4-3b. A smaller scale view of the flood tide volume transport in the vicinity of the Maine Yankee facility.

Figure 4-3c. An even smaller scale view of the flood tide volume transport in the vicinity of the Maine Yankee facility.

Figure 4-4a. The RMS value of volume transport within channels encircling Westport Island. These RMS transports show a minimum of tidal energy at the tidal node off the western shore of Westport Island.

Figure 4-4b. A smaller scale view of the RMS value of volume transport more clearly showing the minimum of tidal energy at the tidal node. Note that this is roughly 1 km south of the diffuser location.

(Figure 4-5). Near the diffuser, these neap tide excursions are of order 1.5 km. Only 1.2 km to the north of the diffuser, the excursions are substantially larger, of order 3.4 km.

The tidal node acts as something of a barrier to the north-south movement of material within the estuary. In particular, it may be viewed as an obstruction to the southward movement of material released from the diffuser. On an outgoing tide, material released from the diffuser is carried to the north. On an incoming tide, the movement of material discharged from the diffuser is somewhat more complicated, with some portion of the material being carried into Bailey Cove and some other portion being transported southward within the main navigation channel. However, this southward transport tends to stall at the tidal node.

To study the impact of the tidal node on the transport of material released at the diffuser, and discharged from the old Bailey Cove outflow, we conducted a number of particle tracking experiments using the modeled velocity fields. The basic approach was to release an ensemble of particles from the location of the diffuser, or the Bailey Cove outflow, and track these using the modeled velocity field over a specified period. The tracking routine was relatively simple. It was assumed that particles followed the modeled flow perfectly (i.e. they did not experience any diffusive "kicks") and were confined to the model channels. Their path was thus explicitly defined at all times except when they encountered a junction where the flow could carry them into two or more channels. In such a case, the channel that a particle would enter was chosen through a modified Monte Carlo scheme in which the probability of entering a channel was prorated based on the transports of all the

Figure 4-5. Magnitudes of tidal excursions at selected model channels.

possible channels of entry. That is, the greater the transport of a channel, relative to companion channels meeting at the junction, the higher its probability of receiving particles entering the junction.

To define the scope over which the tide carried material released from a discharge location, we followed a procedure in which an ensemble of particles (typically 100 particles) was set out from the discharge location at some given time and then tracked for a full tidal cycle of 12.5 hours. This procedure of releasing a group of particles was repeated at regular time intervals (typically every 0.5 hours) through a full tidal cycle. The full collection of particle positions, from all the releases, gave the estimated region over which the tide may be expected to carry material set out from the given discharge location. Plots of these collections of particle locations were used in designating the scope of our sediment collection surveys and in choosing areas of high station density.

Here we show two examples of particle positions determined from the above procedure, one with the release point at the diffuser and the other with the release point at the Bailey Cove outflow (Figures 4-6 and 4-7). Both were determined using a flow field representative of spring tide conditions. The collection of particle positions released from the diffuser reflects the impact of the tidal node in that they are skewed to the north of the diffuser. The furthest extent of these particles is roughly 2.5 km to the north of the diffuser but no more than 1 km to the south of the diffuser. It is noteworthy that a number of the particles set out from the diffuser extend well into Bailey Cove. Not surprisingly, the collection of particle positions also reflects the influence of the tidal node, extending further to the north of their point of entry into the river than to the south.

We must caution against viewing the tidal node indicated by the model as an impermeable barrier. As will be shown in the results of Section 4.3.2, the modeled flow fields can carry material released from the diffuser to the south of the node. There also are a number of mechanisms not

Figure 4-6. An ensemble of the positions of particles released from the location of the diffuser into a modeled flow field forced with a boundary elevation series representative of a spring tide.

Figure 4-7. An ensemble of the positions of particles released from the location of the Bailey Cove discharge into a modeled flow field forced with a boundary elevation series representative of a spring tide.

accounted for in the model which may result in the transport of material across the node. Wind forcing of near-surface flow is one obvious candidate. Another is gravitational circulation associated with density differences within the estuary (which are ignored by DYNHYD). Nevertheless, the tidal node indicated by the model is an actual element of the Back River and Montsweag Bay flow field known to many who frequent the river (Don Hudson, Chewonki Foundation, personal communication). It is a feature that will clearly have a significant impact on the transport of material entering the river.

As noted above, the other important flow feature revealed by the model results was an asymmetry in the properties of the tide within Bailey Cove. Tidal asymmetries, marked by a significant difference in the length of the flood versus the ebb tide, have been recognized in a number of embayments (Boon and Bryne, 1981; Aubrey and Speer, 1985; Speer and Aubrey, 1985; Lincoln and Fitzgerald, 1988; Ranasinghe and Pattiaratchi, 2000). They have been attributed to the generation of short period "overtides" within the embayments (Speer and Aubrey 1985; DiLorenzo, 1988; van de Kreeke, 1988).

The model results show a "flood-dominant" tidal asymmetry in Bailey Cove. This is characterized by a short period flood tide with strong incoming flows and a longer period ebb tide with relatively weak outgoing flows. According to the model results, the degree of asymmetry depends principally on tidal range and position in Bailey Cove. It tends to increase with increasing tidal range and with increasing distance into the cove (going to the head of the cove). Here we show the signature of the tidal asymmetry revealed by the flows and water levels determined for spring tide conditions in a model channel (channel 281) located roughly 150 m NE of the old Bailey Cove discharge (Figures 4-8 and 4-9). Notably, under these tidal conditions, the modeled flood tide exhibits a maximum of velocity of 32 cm/s whereas the ebb tide flow peaks at only 14 cm/s. A flow pattern such as this would tend to lead to particle accumulation within the cove. This would occur because of a tendency for particle resuspension on the strong incoming flood tide and for particle settling on the weaker outgoing tide. As discussed in an ensuing section, particle accumulation in Bailey Cove is indicated by vertical profiles of radionuclides in bottom sediment samples acquired in this project and in previous projects.

4.2.4 Field Evaluation of the Model

In this report we have focused on the tidal node and the tidal asymmetry revealed by the model because these features are likely to have had a significant effect on the transport of radionuclides released into the Sheepscot estuarine system and on the retention of these radionuclides within the system. As noted above, the tidal node acts as something of a semi-permeable barrier to the southward transport of material released from the Maine Yankee facility into the estuary. As also noted above, the tidal asymmetry in Bailey Cove would tend to favor particle accumulation in the cove and possibly lead to the burial of radionuclides absorbed by sediments in the cove. These factors were taken into account when designing our sediment surveys. Based on the simulated particle trajectories produced with the model results (e.g., Figures 4-6 and 4-7), we biased our sample collection sites to the north of the Back River diffuser location. In view of the indication of tidal conditions favorable for particle accumulation in Bailey Cove, our sample plan called for a relatively large number of core samples to be collected from the cove.

Our reliance on the model results in the survey design makes the question of model reliability, especially in regard to the above mentioned features, especially important. Unfortunately,

Figure 4-8. A view of the model grid in the areas of Bailey Cove and Back River. Indicated is the location of a conductivity-temperature-depth (CTD) recorder set out over two tidal cycles during July 7-8, 2004 as well as the model channel (# 281) that encompassed the CTD location.

Figure 4-9. Time series of modeled water depth and water velocity in channel 281 (Figure 4-8). The series give evidence of a flood-dominated tidal asymmetry in Bailey Cove. This is marked by a brief flood tide with a strong incoming flow and a long ebb tide with a relatively weak outgoing flow.

the limited time period and financial resources of our project did not allow for an extensive field evaluation of the model. Nevertheless, we were able to devote two days (July 7-8) to acquiring field measurements to compare with the model results. The measurements were directed at addressing two critical questions regarding the model's performance. These were: how well does the model represent the actual movement of material in the region near the Back River diffuser; and is the tidal asymmetry indicated in Bailey Cove an actual feature, or simply a model artifact?

To address the first question, we released drifters near the location of the diffuser and tracked these over a number of hours. The drifters we employed were "Davis-style" surface trackers, designed to follow flow in the surface 1.3 m of the water column (Davis, 1985). They were purchased from the Gulf of Maine Lobster Foundation by contractor J. Churchill for use on another project and were effectively on loan for this study.

Each drifter consisted of central ballasted cylinder and four "sails", which radiated from the cylinder and provided drag (Figure 4-10). The sails were suspended between four fiberglass rods that extended through cylinder. Affixed to the cylinder top was an electronics package manufactured by the Axonn Corporation, which included a GPS receiver and a satellite transmitter. The drifters were kept afloat by buoyant rings attached to the ends of the upper rods. In the water, each drifter was nearly fully submerged with only a small portion of the cylinder and the masthead electronics package above water.

Drifter tracking was accomplished via the drifter's masthead electronics unit. This obtained GPS fixes of the drifter's position and regularly transmitted these to satellites. The positions were available on the website of the tracking company, AeroAstro, in nearly real time. We had preprogrammed the masthead electronic units used in our study to transmit updated positions every 15 minutes, the smallest update time interval allowed by AeroAstro. However, the actual times between positions received through the AeroAstro system were often much longer, many exceeding 30 min.

A drifter was set out near the diffuser location and subsequently tracked four times, twice on July 7 and twice on July 8. All drifter releases occurred on the outgoing tide. In agreement with the flow pattern indicated by the model, the drifters initially traveled to the north (top panels of Figure 4-11 and 4-12). All drifters also experienced a reversal of motion with the tide change.

To generate modeled particle trajectories for comparison with the drifter tracks, we ran the model to simulate flows over the period of July 6-9, 2004. The model was forced only by the changes in tidal elevation at the seaward boundary, which were determined with the program ADCIRC as described in Section 4.2.1.

For comparison with the drifter trajectories, a total of 100 particles were set out into the model flow field at the time and location of each drifter release. Using the method described in Section 4.2.3, the trajectories of these particles were simulated over a period corresponding to the time of the drifter tracking. The resulting ensemble of modeled particle trajectories compare rather favorably with the drifter trajectories with regard to the direction of movement and time of tidal reversal (Figures 4-11 and 4-12). However, the overall extent of the modeled particles northward movement was generally 30-50 % of the northward extent of the drifters.

Figure 4-10. A view of the type of drifter used in the field studies of July 7-8, 2004. The unit at the top of the drifter's central cylinder (covered in tape) is a tracking device outfitted with a GPS receiver and a satellite transmitter.

Figure 4-11. The top panels show the positions of drifter released during the ebb tide of July 7, 2004. The bottom panels show the positions of particles released into the model flow field at the same time and location as the first drifter position in the panel above. The particle positions encompass the same time period as the drifter tracks shown above.

Figure 4-12. The top panels show the positions of drifter released during the ebb tide of July 8, 2004. The bottom panels show the positions of particles released into the model flow field at the same time and location as the first drifter position in the panel above. The particle positions encompass the same time period as the drifter tracks shown above.

On first consideration, this may seem to be an indictment of the model's ability to accurately represent flows in the vicinity of the diffuser. However, further reflection puts this result in a more favorable light. A principal difference between the modeled and the actual estuary is that the model assumes a vertically uniform velocity, whereas flow in the actual estuary will clearly vary with depth. Consider, for example, the situation in which the estuarine flow is dominated by changes in tidal elevation (i.e., with winds and fresh water inflow having negligible impact on the flows). Because of the effect of bottom friction, we may expect the velocity magnitude in such a system to increase going from the bottom towards the surface. The depth-averaged velocity, which is essentially the velocity estimated by the model, would then be less than the near-surface velocity. For the case in which the velocity increases linearly going upward from a value of zero at the bottom, it is easily shown that the depth-averaged velocity is exactly half the surface velocity. That the modeled velocities are substantially smaller than measured near-surface velocities is thus consistent with expectations. The conservatively low velocities of the model may be well suited for estimating the transport of radionuclides that are absorbed by the bottom sediments. This is because these radionuclides should be carried predominately in near-bottom waters where velocities tend to be the lowest.

To address the second question listed above, of whether or not the tide in Bailey Cove is significantly asymmetric, we deployed a device in Bailey Cove that measured temperature, salinity and water level. The device, a conductivity, temperature and depth (CTD) sensor package manufactured by Seabird Instrument Systems, was set out in the channel within the northern portion of Bailey Cove (see Figure 4-8 for location). Its deployment occurred during low water on the morning of July 7, 2004. The CTD was enclosed in a stainless steel cage to which lead weights were attached. Recovery of the CTD was done during low water, and in a steady shower, on the afternoon of July 8. An important observation of the recovery crew was that the CTD and its cage were covered with thick mat of seaweed and other debris.

This debris almost certainly compromised the conductivity measurements of the CTD, as it likely deprived the conductivity cell of the necessary continuous flow of water. As a consequence, we have little confidence in the salinity record derived from the CTD measurements, which are computed from temperature and conductivity. Our lack of confidence does not, however, extend to the CTD's pressure record, as the pressure measurement does not require a continuous flow of water.

The record of pressure sensor depth (Figure 4-13) shows two full tidal cycles and remarkably little difference between the two high water levels. A simple analysis of the depth record does indeed reveal a tidal asymmetry of the form predicted by the model (with a longer period of falling, as opposed to rising, water levels). As a measure of this, we have taken the times between the maximum sensor depth (high water) and a sensor depth of 0.5 m. For the first tidal cycle, the flood tide increases the sensor depth from 0.5 m to the maximum value over 4.2 hr, whereas the ebb tide decreases the sensor depth from its maximum level to 0.5 m over a longer period of 4.8 hr. A similar disparity between the rates of the rising and falling water level is observed over the second tidal cycle (Figure 4-13).

How well do these measured differences between the rates of falling and rising water in Bailey Cove compare with model predictions? To address this question, we have examined the modeled Bailey Cove water levels determined from the July 6-9 simulation mentioned above. Specifically, we have focused on the modeled water levels of channel 281, which encompasses the CTD location (Figure 4-8), over the period of the CTD data record (12:00 July 7 – 12:00 July 8).

Figure 4-13. The sensor depth (i.e., water level) of the CTD deployed in Bailey Cove (at the location indicated in Figure 4-8). Indicated are the times of rising and falling water between the highest water level and a water level 0.5 m above the minimum sensor depth. These show a tidal asymmetry in which the rate of rising water of the flood tide exceeds the rate of falling water on the ebb tide.

Figure 4-14. The modeled water level of channel 281 in Bailey Cove (Figure 4-8) during the time of the CTD measurements of water level shown in Figure 4-13. As in Figure 4-13, the times of rising and falling water between the highest water level and a water level 0.5 m above the minimum level are indicated. These show a tidal asymmetry of a degree nearly matching that indicated by the measurement of Figure 4-13.

Over this time, the simulated water levels of channel 281 nicely match the CTD measurements in that they show two full tidal cycles with little difference in the levels of high water (Figure 4-14). To quantify the difference in the rates of falling and rising modeled water levels, we have used a measure similar to that applied to the CTD measurements. It is the time difference between the occurrences of high water and a water level 0.5 m water level 0.5 m above the level of low tide. By this measure, the rising tide of the first modeled tidal cycle is 0.8 hr shorter than the falling tide (Figure 4-14). By the similar measure applied to the CTD measurements, the rising tide of the first tidal cycle is 0.6 hr longer than the falling tide (Figure 4-13). The comparison for the second tidal cycle is similarly favorable. For this cycle, the times of rising and falling water between the two chosen benchmarks differs by 0.5 hr in the simulated results and by 0.4 hr in the CTD measurements (Figures 4-13 and 4-14).

It thus appears that tidal asymmetry in Bailey Cove, as indicated by the model results, is an actual phenomenon. For the intermediate tidal ranges encountered during our field effort, the model seems to be capable of accurately reproducing this tidal asymmetry. It remains to be seen, however, if the extreme degree of tidal asymmetry predicted by the model during spring tide conditions actually occurs.

4.3 MODELING OF RADIONUCLIDE TRANSPORT

4.3.1 Model History and Description

The transport of radionuclides discharged from the Maine Yankee facility and the uptake of these radionuclides into bottom sediment have been modeled in previous studies described by Churchill *et al.* (1980) and Hess *et al.* (1983).

Churchill *et al.* (1980) considered the sediment uptake of radionuclides released from the Bailey Cove discharge in the early 1970's. Their approach was to simulate the movement of radionuclides entering Bailey Cove using the velocities derived from DYNHYD. Sorption of radionuclides into the bottom sediment was modeled according to

$$C_k(t) = C_{k0}[1 - E_{ek}(1 - e^{\alpha_k t})]$$

where $C_k(t)$ and C_{k0} are the water borne concentrations of the radionuclide, k, at times t and 0, respectively. The sorption of the radionuclide onto the bottom sediment is parameterized by the equilibrium constant, E_{ek} and the sorption constant α_k .

For the radionuclides considered by Churchill *et al.* (134 Cs, 137 Cs, 58 Co and 60 Co), the transfer parameters, E_{ek} and α_k , were specified based on the results of laboratory experiments in which a tank of estuarine water and suspended estuarine sediments was spiked with a known amount of the radionuclides. Samples of the suspension were extracted at regular times and measured for radionuclide absorption. The rate of this absorption was used in determining the transfer parameters.

A correlation analysis presented by Churchill *et al.* showed a strong statistical relationship between modeled sediment-bound radionuclide concentrations and radionuclide concentrations measured in surficial sediment samples from Bailey Cove. For ¹³⁴Cs and ¹³⁷Cs, the correlation coefficients relating the measured and modeled concentrations all exceeded 0.8. For ⁵⁸Co and ⁶⁰Co, the correlation coefficients were all in excess of 0.62. Hess *et al.* (1983) used the same numerical programs as employed by Churchill *et al.* to model the sediment uptake of radionuclides released through the diffuser. They noted an excellent qualitative agreement between the modeled and measured patterns of the short-lived ⁵⁸Co (half life of 70.8 days) in bottom sediments. The comparison between modeled and measured patterns of the longer-lived ¹³⁷Cs (30.17 yr half life) in the bottom sediments was also good, but somewhat inferior to that for ⁵⁸Co. Hess *et al.* attributed this difference to the impact of ¹³⁷Cs from fallout and from plant discharges of previous years. They noted that such sources of ¹³⁷Cs were not accounted for in the model, which simulated the initial sorption of the radionuclide onto bottom sediment from a single release or a small number of recent releases.

In modeling the transport of radionuclides, Churchill *et al.* (1980) and Hess *et al.* (1983) used the program DYNQUA. This is a Fortran-based companion program to DYNHYD (Feigner and Harris, 1970). In the modeling for this project, we decided against the use of DYNQUA for the principal reason that a working version of the program was not readily available. Instead, the same equations and numerical approach used by DYNQUA were implemented by MATLAB routines. In our experience, implementing numerical schemes is much easier in the MATLAB, as opposed to the Fortran, working environment. In addition, our analysis of the model results and the graphical presentation of these results were done entirely within MATLAB.

In our modeling, the basic procedure was to first upload files of time varying velocity fields produced by DYNHYD and use these to simulate the movement of discharged radionuclides through the model domain. The principal equation invoked was the diffusion-advection equation with a constant coefficient of turbulent diffusion. Sorption of radionuclides into the bottom sediments was modeled with the equation given above. The model was executed with a time step of 250 s.

The model produced averaged concentrations of sediment-bound radionuclides distributed over the top 1-cm of the sediment, a depth roughly corresponding to the average sampling depth of the surface sediment samples of our survey and the previous surveys described by Churchill *et al.* (1980) and Hess *et al.* (1983). The model-produced concentrations of sediment-bound radionuclides were thus volume concentrations. These are expressed here (Figures 4-16 to 4-20) in units of pCi I^{-1} . To convert these to mass concentrations (in units of pCi kg⁻¹, for example), one should note that a 1-liter sample of surface sediment from our study area typically has a mass of 1.8 kg.

4.3.2 Model Results

Our modeling effort needs to be viewed in the context of the history of radionuclide discharge from the Maine Yankee facility. Over the course of the power plant's operation and decommissioning, the discharge location and mode of discharge have undergone a number of changes. From the time of the plant's initial operation until July 1975, cooling water and radionuclides were discharged into Bailey Cove over a weir a short distance to the north of Foxbird Island (Figure 4-2b). On July 16, 1975, discharge was switched to the subsurface diffuser system. The diffuser was 305 m (1000 ft) in length and supported 42 discharge nozzles spaced 7.6 m (25 ft) apart. It was located off the southern tip of Foxbird Island (Figure 4-2b) at a depth range (relative to mean water) of 9 to 14 m. The diffuser system was used for the discharge of cooling water and radionuclides throughout the remainder of the plant's operation. The mode of discharge was altered in the late 1990's as a consequence of the plant's decommissioning. In October 1998, Maine Yankee approved a change in the discharge procedure that allowed for effluent releases with low or no dilution flow from the service water system. Later, in February 1999, this method of release was augmented, to maximize tidal dilution of effluents, by requiring that the release of liquid radioactive

effluents be carried out under low tide conditions just after the tide had turned. The final major alteration in the mode of discharge occurred in July 2002 when the discharge path for liquid effluent was switched from the forebay-diffuser route to a hose which ran through the intake channel and discharged effluents a short distance north of Little Oak Island (Figure 4-2b).

Of the long-lived radionuclides discharged by the plant, ⁶⁰Co and ¹³⁷Cs were released in, by far, the greatest volumes. As revealed by the time series of their quarterly mass releases (Figure 4-15), most of the total mass of ⁶⁰Co and ¹³⁷Cs released was discharged during the time of the plant's operation. For both nuclides, only a small amount of mass was released, relative to the total mass discharged, over the period of tide specific discharge from February 1999 through July 2002. When

Figure 4-15. Time series of the quarterly amounts of ⁶⁰Co and ¹³⁷Cs released from the Maine Yankee facility. Time periods of the Bailey Cove, diffuser and Little Oak Island discharges are indicated on the bar above time series lines. The circled values show the amounts of radionuclides released in the simulations of discharges from the Bailey Cove outflow and the diffuser.

considering the input of these radionuclides into the estuarine system, three modes of discharge stand out as most important. One is the discharge into Bailey Cove and another is the "non-tidal specific" discharge from the diffuser. These account for most of the total discharged mass of these radionuclides. The third is the discharge into the Back River near Little Oak Island. This is deemed important because it is the most recent source of radionuclides in the sediments of Back River and Montsweag Bay. Our modeling has focused on these three modes of discharge and considered only the release of ¹³⁷Cs and ⁶⁰Co. In modeling releases of these elements from the diffuser or the Bailey Cove outflow, we simulated episodic discharges in which a specified quantity of ¹³⁷Cs or ⁶⁰Co was set out at a steady rate over a 24-hr period. This mimicked actual discharges during the period of the power plant's operation. During this time, most of the material set out during a quarterly period was discharged in one or two releases of roughly one day duration (Michael Whitney, Maine Yankee, personal communication). The simulations of the transport and sediment uptake of these releases

were carried out over the discharge period and the subsequent 4 days. The velocity fields used for these simulations were determined from DYNHYD runs with a steady intake of water (20 m³ s⁻¹) imposed at the plant intake and a steady outflow (20 m³ s⁻¹) at the location of either the Bailey Cove outflow or the diffuser. The total mass of ¹³⁷Cs or ⁶⁰Co set out was set equal to the largest quarterly amount of the radionuclide released from the diffuser (for the diffuser release simulations) or from the Bailey Cove outflow (these masses are displayed graphically in Figure 4-15). For each discharge location, these largest quarterly discharge amounts accounted for a large fraction of the total quantity of radionuclide set out from the location (Figure 4-15). For the period of diffuser discharge, for example, the largest quarterly release of ¹³⁷Cs accounted for 50% of the overall quantity of discharged ¹³⁷Cs.

The Little Oak Island releases differed from those from the diffuser and the Bailey Cove outflow in that they were not episodic but tended to be spread out over a number of days. In the simulations, these releases were represented by a steady discharge of ⁶⁰Co or ¹³⁷Cs extending over 4 days. The total amount released was set equal to the largest quarterly discharge amount from the Little Oak Island discharge. The simulations included this discharge period and the subsequent day.

For all discharge locations, simulations were carried out using DYNHYD velocity fields representative of spring and neap tide conditions. As would be expected, the distributions of sediment-bound radionuclides determined for spring tide conditions were a bit more expansive than the distributions computed for neap tide conditions. Nevertheless, overall patterns of radionuclide uptake determined for spring and neap tides were not dramatically different. Only those distributions resulting from spring tide simulations are displayed here (Figures 4-16 to 4-20).

The estimated distributions of sediment-bound of ⁶⁰Co and ¹³⁷Cs released from the Bailey Cove outflow (Figure 4-16) bear a close similarity in magnitude and structure to the modeled distributions determined from the study of Churchill *et al.* (1980). As would be expected, the concentrations within the sediments of Bailey Cove are the highest of the modeled distributions, exceeding 100 pCi I⁻¹ for ⁶⁰Co and 12000 pCi I⁻¹ for ¹³⁷Cs. Outside the cove, the model predicts substantial concentrations of ¹³⁷Cs extending broadly over the estuary. For example, modeled ¹³⁷Cs concentrations exceeding 500 pCi I⁻¹ (an easily detectible level) stretch over more than 8 km of the estuary. These dwarf the modeled ⁶⁰Co concentrations outside the Cove which do not rise above 75 pCi I⁻¹. Both the ⁶⁰Co and ¹³⁷Cs concentrations exhibit a northward bias outside the cove, tending to be higher to the north of the cove mouth than to the south. This is a consequence of the tidal node that appears in the DYNHYD simulations roughly 1 km south of the mouth of Bailey Cove that was discussed at length in Section 4.2.3.

The concentrations of sediment-bound radionuclides released from the diffuser (Figure 4-17) also exhibit a northward bias, tending to be higher to the north of the diffuser than to the south. Perhaps one of the most significant indications of the modeled concentrations is the extent to which radionuclides released from the diffuser are incorporated into the sediments of Bailey Cove. In fact, the simulations indicate that the diffuser may be the principal source of ⁶⁰Co found within Bailey Cove sediments. The concentrations of ⁶⁰Co in Bailey Cove sediment that originate from the modeled diffuser release are no less than 200 pCi Γ^1 , whereas the modeled concentrations in the cove's sediment that stem from the modeled Bailey cove discharge are not greater than 200 pCi Γ^1 . When comparing the modeled sediment-bound radionuclide distributions from historical releases with the recent measured distribution determined as part of this project, it is necessary to consider the effect of radioactive decay on the modeled concentrations. Clearly, there are other factors, such as desorption,

Figure 4-16a. Modeled concentrations of ¹³⁷Cs and ⁶⁰Co in bottom sediments. These were derived from simulations of radionuclide release from the Bailey Cove discharge (depicted by the black diamond) during flood tide conditions. Note that these are volume concentrations in units of pCi l⁻¹. They may be converted to mass concentrations in units of pCi kg⁻¹ by dividing by the density of surfacial sediment, typically 1.8 kg l⁻¹.

Figure 4-16b. A smaller scale view of the modeled concentrations of ¹³⁷Cs and ⁶⁰Co of Figure 4-16a.

Figure 4-17a. Modeled concentrations of ¹³⁷Cs and ⁶⁰Co in bottom sediments. These were derived from simulations of radionuclide release from the diffuser (depicted by the black diamond) during flood tide conditions.

17a.

Maine Yankee Marine Sampling Study

Figure 4-18a. Modeled concentrations of ¹³⁷Cs and ⁶⁰Co in bottom sediments as derived from simulations of radionuclide release from the Bailey Cove discharge (depicted by the black diamond) during flood tide conditions. These are the same concentration fields shown in Figure 4-16, except with the effects of radioactive decay accounted for.

Figure 4-18b. A smaller scale view of the modeled concentrations of 137 Cs and 60 Co of Figure 4-18a.

Figure 4-19a. Modeled concentrations of ¹³⁷Cs and ⁶⁰Co in bottom sediments as derived from simulations of radionuclide release from diffuser (depicted by the black diamond) during flood tide conditions. These are the same concentration fields shown in Figure 4-17, except with the effects of radioactive decay accounted for.

Figure 4-19b. A smaller scale view of the modeled concentrations of ¹³⁷Cs and ⁶⁰Co of Figure 4-19a.

Figure 4-20. Modeled concentrations of ¹³⁷Cs and ⁶⁰Co in bottom sediments. These were derived from simulations of radionuclide release from the Little Oak Island Outfall (depicted by the black diamond) during flood tide conditions.

that may lead to a decline in sediment-bound radionuclide concentrations; but radioactive decay is one that will unquestionably occur and the only one that can easily be accounted for through calculations.

We have done this "accounting" by applying a radioactive decay factor to the model results. This took the form of:

$$C_k = C_{k0} 2^{-t/t_{k1/2}}$$

Where C_{k0} is the modeled concentration of radionuclide *k* due to an historical release, C_k is the current concentration with the effects of radioactive decay taken into account, *t* is the time since the release and $t_{k1/2}$ is the half life of the radionuclide (30.17 yr for ¹³⁷Cs and 5.26 yr for ⁶⁰Co).

With this decay formula applied, the sediment-bound radionuclide concentrations derived from the simulations of large historical releases still rise above a detectable level over broad areas of the estuary (Figures 4-18 and 4-19). For ⁶⁰Co, the "decayed" concentrations resulting from the simulated diffuser discharge are above 50 pCi l⁻¹ (a conservatively low level of detection) over a band in Back River and Montsweag Bay of roughly 1.5 km in length (Figure 4-19b). Of particular significance are the relatively high decayed concentrations of ⁶⁰Co in the upper reaches of Bailey Cove, where model results and observations reveal tidal conditions conducive to sediment accumulation (Sections 4.2.3 and 4.2.4). For ¹³⁷Cs, the decayed concentrations are much higher and extend more broadly. The range of detectable ¹³⁷Cs concentrations, determined from both simulated diffuser and Bailey Cove discharges, extend over a region encompassing Bailey Cove and all of the Back River and Montsweag Bay. Within Bailey Cove and in the southern portion of the Back River,

the decayed ¹³⁷Cs concentrations are particularly high, well in excess of 2000 pCi l⁻¹ in many locations.

In the absence of significant desorption and sediment movement, it thus appears very likely that remnants of large historical discharges of ¹³⁷Cs may be found, at relatively high concentration, in the sediments of Bailey Cove and the Back River. By far, the largest of these historical discharges occurred in the mid-1970's (Figure 4-15). If buried, the sediment-bound ¹³⁷Cs from these discharges may very likely be found in a single depth band. Our results also indicate a likelihood of finding ⁶⁰Co remnants from historical discharges, but that these remnants may be near the level of detection.

The most recent releases of radionuclides, from the Little Oak Island discharge, have contained much higher concentrations 60 Co than 137 Cs. This is reflected in the results of simulations of sediment uptake of these releases. The modeled concentrations of 137 Cs in the sediment are everywhere well below the level of detection (Figure 4-20); whereas modest 60 Co concentrations of 20-40 pCi I⁻¹ are predicted near Little Oak Island. It should be noted that the simulation that produced these 60 Co concentrations accounted for roughly 1/3 of the total mass of 60 Co released from the Little Oak Island discharge. The model simulations thus indicate the possibility of sediment-bound 60 Co concentrations of order 100-200 pCi I⁻¹ resulting from the Little Oak Island releases.

An important property that is easily calculated with the model is the fraction of released radionuclides that are absorbed by bottom sediments. Here we refer to this as the fraction retained, as the remainder is presumably flushed from the estuarine system. The close agreement between modeled and measured sediment-bound radionuclide concentrations near the Maine Yankee facility reported by Churchill *et al.* (1980) and Hess *et al.* (1983) offer a good degree of confidence in the model's estimates of such a fraction. Here we present fraction retained values of ¹³⁷Cs and ⁶⁰Co computed for all three release sites from simulations using spring tide velocities (Table 4-1). Taken together, these indicate that only a small fraction of the radionuclides released are retained in the system through absorption in the sediments. The fraction retained is of order 5% for ⁶⁰Co and 10% for ¹³⁷Cs.

	¹³⁷ Cs	⁶⁰ Co
Bailey Cove Outflow	12.6	4.9
Diffuser	8.7	3.4
Little Oak Island	5.2	2.0

Table 4-1.According to model simulations, the percent of the total radionuclide released from
the indicated location that is absorbed in the bottom sediment. The values were
computed from simulations using velocities representative of spring tide conditions.

4.3 MODELING SUMMARY

The modeling component of our project has yielded new insights into the workings of the Sheepscot estuarine system and the manner in which these affect the transport of radionuclides introduced to the system. Of particular importance is the indication of a tidal node to the south of the Maine Yankee diffuser. This corresponds to a minimum of tidal energy and is the product of the merging of two tidal waves which travel in opposite directions around Westport Island. Although the presence of this node was not recognized in previous studies of the region (e.g., Churchill *et al.*, 1980) and Hess *et al.*, 1983), its effect on the transport of material released from the Maine Yankee facility

is likely to have been significant. Our simulated particle tracks indicate that the node acted as something of a barrier to the southward movement of material released from the Back River discharge and from the Bailey Cove outflow. On the basis of this result, we biased our sample collection in the Back River-Montsweag Bay region to the north of the diffuser location.

We should note, however, that there is some question as to the exact location of the node. In the model simulations, it appears roughly 1 km south of the diffuser. As discussed earlier, however, this location is sensitive to the depths of the model channels ringing Westport Island. In addition, the model does not include the Kennebec River, which connects with the Sheepscot estuary through the Sasanoa River (Figures 3-2, 4-2a). The addition of the tidal wave from the Kennebec River mouth, which undoubtedly enters the Sheepscot estuary through the Sasanoa, will likely impact the tidal node's location and complicate its dynamics.

Another important dynamical feature revealed by the modeling, and by the observations meant to test the model, is a tidal asymmetry within Bailey Cove. This is a flood dominated asymmetry, characterized by a flood tide flow that is shorter and stronger than the ebb tide flow. Such an asymmetry favors particle retention. A tendency for particles to be retained in Bailey Cove is confirmed by the measurements of this project. As will be shown in an ensuing section, the radionuclide concentrations within core samples from Bailey Cove indicate a substantial rate of sediment accumulation.

Modeling of radionuclide uptake by bottom sediments has indicated that easily detectable remnants of historical discharges of ¹³⁷Cs are likely found over a broad area of the estuary. For ⁶⁰Co, the model results indicate that marginally detectable remnants of historical releases may be found in bottom sediments. According to the model, sediment uptake of the recent releases near Little Oak Island is expected to produce marginally detectable levels of ⁶⁰Co, but no detectable levels of ¹³⁷Cs.

5 GAMMA SCAN RESULTS

5.1 SEDIMENT CORES

There are four sources of the radionuclides in the vicinity of the Maine Yankee nuclear reactor. The first was global fallout from the United States and Russian weapons testing which started in 1945 and became a maximum in 1957 through 1969. There were smaller additions in 1983 due to the Chernobyl reactor accident and from French and Chinese atmospheric weapons testing. This activity included radionuclides such as ¹³⁷Cs, ¹³⁴Cs, ⁶⁰Co, ⁹⁵Nb and ⁹⁵Zr and ²³⁹Pu, and ²⁴⁰Pu to mention just a few. In the early 1970's, Maine Yankee nuclear reactor discharged nuclides into Bailey cove on monthly basis using the cooling water. Their intake water came from near Oak Island on the other side of Bailey point.

Over the course of the power plant's operation and decommissioning, the discharge location and mode of discharge have undergone a number of changes. From the time of the plant's initial operation until July 1975, cooling water and radionuclides were discharged into Bailey Cove over a weir a short distance to the north of Foxbird Island. On July 16, 1975, discharge was switched to the subsurface diffuser system. The diffuser was 305 m (1000 ft) in length and supported 42 discharge nozzles spaced 7.6 m (25 ft) apart. It was located off the southern tip of Foxbird Island at a depth range (relative to mean water) of 9 to 14 m. The diffuser system was used for the discharge of cooling water and radionuclides throughout the remainder of the plant's operation. The mode of discharge was altered in the late 1990's as a consequence of the plant's decommissioning. In October 1998, Maine Yankee approved a change in the discharge procedure that allowed for effluent releases with low or no dilution flow from the service water system. Later, in February 1999, this method of release was augmented, to maximize tidal dilution of effluents, by requiring that the release of liquid radioactive effluents be carried out under low tide conditions just after the tide had turned. The final major alteration in the mode of discharge occurred in July 2002 when the discharge path for liquid effluent was switched from the forebay-diffuser route to a hose which ran through the intake channel and discharged effluents a short distance north of Little Oak Island. The pattern of radionuclides in Bailey Cove and Montsweag Bay area depends upon these different types of releases as well as the sedimentation in the Montsweag Bay, Bailey Cove area.

As we look at the radionuclides taken in cores from 40 points in Tables 5-1, 5-2, 5-3, and Figures 5-1 to 5-52 in the Montsweag Bay, Bailey Cove area, we note that the ¹³⁷Cs and ⁶⁰Co are the strongest nuclides observed. Prior to 1982, the sediments in Bailey Cove were closed for clam digging allowing only worm digging. This was due to presence of sewage contamination in the Bay. After the cleanup of discharge waters in the area, the Cove was opened by the Department of Marine Resources for clam digging after radionuclides were measured in the clams sampled from Bailey Cove. The harvesting of worms and clams from this area has resulted in mixing of the sediments down to a depth of 2 feet. Cores taken in this area reflect this plowing and mixing of the sediments by human digging. At the same time the sediments in the Bay may be slowly increasing in depth even though the overall depth has not changed sufficiently to change the low tide area. Some of the change in sediments may be due to gradual compaction of the sediments near the bottom of the mixed zone. The four-inch cores that were taken in the zones which are exposed at low tide show sediments' radioactivity from ¹³⁷Cs down to the bottom of the 2 foot level. The less disturbed three-inch cores that were taken by boat from areas that are not exposed at low tide show activity down to 10 inches. The highest activity observed from ¹³⁷Cs was observed in a core from the north end of Bailey Cove

near where the road crosses the small stream that enters in the north end of Bailey Cove. The sediments in this area are dominated by the freshwater input and have no value for clam or worm digging and are thus not disturbed. The core at station Long Creek shows its maximum of 913 pCi/kg at about 4 inches depth. Another core that has 250 pCi/kg of ¹³⁷Cs at 6 inches was collected at station 68 near Long Ledge, close to the location of the diffuser. We would expect higher levels due to this discharge from diffuser starting in 1980. Finally the highest Co-60 sediments at 158 pCi/kg is found at station 109 in surface sediments just north of the diffuser. This location reflects releases during the final decommissioning phases of the reactor, which involved liquids from the spent fuel pool and from parts with high activity from the reactor vessel.

The general trend of radioactivity is higher close to the discharge points and lower as distance increases from them.

The distant cores included samples from distant locations such as the north end of Back River, Barry Cove, Chewonki, Robin Hood Cove and Sasanoa (Station 149) stations as well as samples from the Damariscotta River. We notice peak values of ¹³⁷Cs between 100 and 127 pCi/kg at the distant Wiscasset, Eddy, Pottle Cove and 147 (Westport Island) stations. The Sasanoa station peaked at 5 inches with 330 pCi/kg, while control stations 148 and 149 had peaks of 36 and 73 pCi/kg, respectively. These levels represent fallout accumulation in the sediments along the coast. The circulation of water in the other direction toward the southwest, only Sasanoa is west. These values are lower than the Long Creek station in Upper Bailey Cove value of 913 pCi/kg at 4 inches. The ⁶⁰Co concentrations observed at these locations are very near the average error value of 25 -30 pCi/kg.

Cores taken from Bailey Cove with high values of ¹³⁷Cs include Long Creek station, station 74 in Bailey Cove, station 77 in Upper Bailey Cove, station 85 in South Bailey Cove, station 99 in North Bailey Cove, Station 101 in Eaton Farm of Bailey Cove, and Station 105 at the top of Bailey Cove. The highest of these is the Long Creek station with 913 pCi/kg. Upper Bailey Cove station 77 has 222 pCi/kg, South Bailey Cove station 85 has 70 pCi/kg, North Bailey Cove station 99 has 155 pCi/kg and Eaton Farm Bailey Cove shows 213 pCi/kg. The top of Bailey Cove station 105 shows 100 pCi/kg. All of these values are lower than values in Bailey Cove that were observed in the 1970s. Small amounts of ⁶⁰Co about 20 to 30 pCi/kg also show up in the samples. The level of cesium decreases after 10 inches' depth in the sediments of Bailey Cove and decreases after 6 inches at the top of Bailey Cove and for the Long Creek station.

Cores from Montsweag Bay shoreline had generally lower ¹³⁷Cs concentrations, including station 113 and station 117, Little Oak Island; station 118; station 134, the Westport Island ferry landing; stations 143; station 144, Oak Island or Murphy Corner; and station 145 or Murphy Corner. The ¹³⁷Cs levels range as much as 120 pCi/kg but generally are less than a hundred pCi/kg for the Stations. The ¹³⁷Cs concentration with depth goes as deep as nine to 14 inches deep and in some instances we even see two peaks. Station 118 shows two peaks for the ¹³⁷Cs. ⁶⁰Co values in the stations range around 20 to 30 pCi/kg. Oak Island Murphy Corner shows 40 pCi/kg.

The cores from the mid-channel, Stations 38, 44, 50, 59, 60; South Oak Island 61, 62, 63; Long Ledge 64, 65 and 67 were three-inch cores that show decrease in ¹³⁷Cs from around 52 to as high as a 100 pCi/kg down to low values in six to 8 inches depth. They contained small amounts of ⁶⁰Co of the order of 20 pCi/kg.

The cores have a structure of two ¹³⁷Cs peaks for many instances. Low sedimentation rate will give one broad peak instead. Long Creek station shows this one broad peak, which represents dates from 1953-1983 as a single broad peak from 1" to 6" deep. Double peaks can be seen in Bailey Cove station 2 with a peak from 1" to 11" deep. This is 10" in 30 years. Two weak peaks are seen for Wiscasset station.from 3" to 9" (6" for 30 years). Station 8 has a peak at 6" to 13" with 7" in 30 years. Station 34 shows two peaks from 1" up to 7" or 6" in 30 years.

A summary of these peaks are given below in Table 5-2.

The results in table 5-3 show a total activity contained in the cores. It was calculated by summing the activity found in each slice of the core to yield a grand total activity (in pCi) for the whole core. This number gives the measure of activity still contained in the deep sediments of the bay. This number can be useful in determining the remaining total activity in the bay after 30 years of decay and loss by sediment dispersal and dilution due to off shore ocean sediment. Long Creek's total activity is the highest ¹³⁷Cs activity at 1297 pCi. The highest ⁶⁰Co activity of 73 pCi was found at station 118 near Little Oak Island.

5.2 LEAD-210 CORE RESULTS

The station 144 core was analyzed for ²¹⁰Pb and found to have a sedimentation rate dating to 4"= 20 years, or one inch for each 5 years. The graph of the data can be seen in Figure 5-48. This core is consistent with the double peak time of 30 years from 1957-87, or 30 years between the two peaks.

5.3 SURFICIAL SEDIMENTS

The University of Maine received 136 surface samples collected from around Maine Yankee Nuclear Power Plant. All samples were gamma counted on one of three systems, one being a very low background system. Each system is an intrinsic germanium detector and was calibrated using U.S. EPA Quality Assurance liquid gamma standards under the RADQA program. A cross calibration was then accomplished to ensure that each system provide the same result for a given sample. Thus, unless the very low background system was needed, the germanium system used was transparent to the results. The results were compared with a pre- and post-operational study of the area completed in 1976 (Technical Note 76.3).

The gamma spectrum was analyzed for 14 radionuclides with results presented in tabular fashion included with the table of core results. Surficial samples are marked with "S" in the depth column. However, this discussion concentrates on the results for ⁶⁰ Co (1332.51 eV peak) and ^{137.}Cs. To begin, the values were examined without regard to location to see the range of values. For sediment samples, the ¹³⁷ Cs values ranged from a high of 287.2 pCi/kg to a low of 2.9 pCi/kg with one sample below detection limits while ⁶⁰ Co ranged from 168.7 pCi/kg to a low of 0.5 pCi/kg with four samples below detection limits. These results are summarized in Table 5-5 along with the pre-and post-operational values.

The results indicate that currently, the values of ¹³⁷ Cs sediment samples around the Maine Yankee site are lower than before the power plant was brought on line. There are two possible explanations for this result. First, the ¹³⁷ Cs seen pre-operation has decayed. Second, a mixing is occurring within the tidal flat, lowering the radioactivity seen at the surface. The first explanation is certainly plausible since approximately one half life of ¹³⁷ Cs has occurred since inception of the

power plant, but the second explanation is more tenable. As people dig clams or worms in the tidal flat area, they are turning over the tidal flat area, mixing any Cesium into the soil. Also, the area is washed by tides. In general, we feel that the ¹³⁷Cs values are low predominately due to a mixing in the tidal flat. For the ⁶⁰Co sediment samples, the values, while still generally low, are higher than the pre-operational study which found all samples below detectable limits. However, the new ⁶⁰Co values are well below the post-operational study values. Again, these results are probably due to decay of the ⁶⁰Co and due to mixing within the tidal flat.

Additionally, six soil samples from dry ground were taken around power plant. The ¹³⁷Cs values ranged from 46.3 pCi/kg to 120.8 pCi/kg while the ⁶⁰Co values ranged from 3.1 pCi/kg to 26.5 pCi/kg. The ¹³⁷Cs values are orders of magnitude less than soil samples taken in the pre-operational study, which found values from 1110 pCi/kg to 4960 pCi/kg. The pre-operational study values are also significantly higher than anything seen in the tidal marsh sediment during this study. Thus, no accumulation of radionuclides on dry ground was found.

It is now necessary to discuss the distribution of ⁶⁰Co and ¹³⁷Cs around the power plant (Figures 5-53 to 5-56 with corresponding station numbers in Figures 5-1 to 5-4). Although a quick perusal of the results shows no significant accumulation and no "hot areas" by the 3x background definition, the distribution of ⁶⁰Co and ¹³⁷Cs is not random. In particular, ⁶⁰Co has its most significant values near the diffuser along the Back River while ¹³⁷Cs has its most significant values near the outfall in Bailey Cove. Figure 5-53 shows the distribution of ⁶⁰Co values while Figure 5-54 shows the distribution of ¹³⁷Cs. The difference in distribution is related to a variety of factors. First, as shown in Figure 4-15, early Maine Yankee's discharges into Bailey Cove before the diffuser installation were characterized by predominantly ¹³⁷Cs effluents. Later Maine Yankee discharges through the diffuser into the Back River were characterized b predominantly ⁶⁰Co effluents. Second, the shorter decay period of ⁶⁰Co versus ¹³⁷Cs makes the difference between the more recent Back River ⁶⁰Co dominated effluents and the earlier Bailey Cove ¹³⁷Cs dominated effluents more pronounced. Comparison with the modeling for ¹³⁷Cs shows that particles released from the diffuser also migrate to Bailey Cove as well.

5.4 BIOTA GAMMA SCAN

The biota gamma scan results are shown in Table 5-4. The biota included clamshells, mussels, rockweed, fish tissue, control mussels, clam tissue and lobster. The majority of the samples have less nuclide content than their errors in measurement. Some of the nuclides found above their two-sigma error are 16.8 pCi/kg of ¹³⁷Cs in fish tissue, 97.2 pCi/kg of 65Zn in rockweed, 46.5 pCi/kg of 65Zn in lobster, 13.8 pCi/kg of ²²Na in clam shells, and 8.4 pCi/kg of ⁵⁴Mn in clam tissue.

Control biota samples were taken from South Portland and near the Darling Center in the Darmariscotta Bay. The results of the control biota samples are shown in the lower half of Table 5-4. The control sea scallops and rockweed each show a ⁶⁰Co concentration above their 2 sigma level, but only from one of the two 60Co gamma ray energies. The control horse mussels have 14.4 pCi/kg of ¹³⁷Cs. Other nuclides with a value greater than their 2-sima error are ⁶⁵Zn found in the control sea scallops, oysters and blue mussels while ⁵⁴Mn was found in the control sea scallops. These control results are similar to those found near the plant.

5.5 HARD TO DETECT NUCLIDES

The marine samples of clams, clam shells, muscles, mussel shells, fish, lobsters, seaweed, and sediments were measured by Framatome for hard to detect nuclides. The samples were collected from the vicinity of the diffuser, near Oak Island, and in Bailey Cove. Sites were selected where the sediments were highest. The samples were delivered to Framatome on October 22, 2004, measurements of ⁵⁵Fe, ⁶³Ni, ⁹⁰Sr, ²³⁹Pu, ²³⁸Pu. Results were obtained on December 9-13, 2004. These results are shown in Table 5-6.

The results of the hard to detect measurements show very low concentrations for 35 out of the 40 measured. The five with a measured concentration greater then their 1-sigma uncertainty are: 1.5 pCi/g of ⁶³Ni in mussel shells, 1.25 of ⁹⁰Sr in lobster, 3.9 pCi/g of ⁶³Ni in sediment, while 9.3 x 10^{-1} of ⁹⁰Sr in fish, and 9.3 x 10^{-3} pCi/g of ²³⁹Pu in sediment are above their 2-sigma uncertainty. All of the values measured are well below the required minimum detectable activity.

5.6 ERROR DISCUSSION OF GAMMA SCANS

The results of our gamma-ray measurements are stated with the value entered in a column labeled by a nuclide, ⁶⁰Co for example, and the one-sigma statistical error in the measurement is given in the next column to the right. The average error for our ⁶⁰Co and ¹³⁷Cs columns is 10-15 pCi/kg and 20-25 pCi/kg, respectively. Measurements which are lower or equal to this error are so low that they represent a mixture of signal and noise. Our ability to determine the signal is hampered by the presence of counting noise. Thus, our certainty of the value or existence of low readings is doubtful for the smaller than error readings. A repeated counting of the same sample value may yield a positive value for one count and a reading of zero for another. When the sample shows values twice as large as the error, we can be more confident of the presence of the nuclide in the sample.

Figure 5-1. 6-9 July 2004 Station Locations

Figure 5-2. 6-9 July 2004 Station Locations - Close to Plant

Figure 5-3. 2-5 Aug 2004 Station Locations

Figure 5-4. 2-5 Aug 2004 Station Locations - Close to Plant

Figure 5-5. Station Sasanoa core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-6. Station Pottle Cove core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-7. Station Long Creek core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-8. Station Barry Cove core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-9. Station Wiscasset core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-10. Station Eddy core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-11. Station Chewonki Camp core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-12. Station 2 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-13. Station 8-1 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-14. Station 25 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-15. Station 34, Diffuser, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-16. Station 38, Westport Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-17. Station 44, Eaton Farm Point, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-18. Station 50, Pottle Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-19. Station 59, South Oak Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-20. Station 60, South Oak Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-21. Station 61, Westport Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-22. Station 62, Westport Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-23. Station 63, Long Ledge, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-24. Station 64, Long Ledge, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-25. Station 65, Bluff Head, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-26. Station 66-1 core: 60 Co and 137 Cs vs. depth

Figure 5-27. Station 67, Cushman Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-28. Station 68, Foxbird Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-29. Station 73, Bailey Cove Outfall, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-30. Station 74, Bailey Cove Outfall, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-31. Station 77, Upper Bailey Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-32. Station 85, South Bailey Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-33. Station 99, North Bailey Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-34. Station 101, Eaton Farm Bailey Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-35. Station 105, Top of Bailey Cove, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-36. Station 108, Bailey Point West, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-37. Station 113, South Foxbird Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-38. Station 117 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-39. Station 118, Little Oak Island, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-40. Station 134 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-41. Station 143, Youngs Point, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-42. Station 144, Oak Island Murphy Corner, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-43. Station 145, Oak Island Murphy Corner, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-44. Station 146, Darling Center, core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-45. Station 147 core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-46. Station 148 (Darling Center) core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-47. Station 149 (Sasanoa) core: ⁶⁰Co and ¹³⁷Cs vs. depth

Figure 5-48. Station 144 core: 210Pb vs. depth

Figure 5-49. ⁶⁰Co Concentrations at 6 in. (pCi/kg)

Figure 5-50. ¹³⁷Cs Concentrations at 6 in. (pCi/kg)

Figure 5-51. ⁶⁰Co Average Core Concentrations (pCi/kg)

Figure 5-52. ¹³⁷Cs Average Core Concentrations (pCi/kg)

Maine Yankee Marine Sampling Study

Figure 5-53. ⁶⁰Co Surficial Concentrations (pCi/kg)

Maine Yankee Marine Sampling Study

Figure 5-54. ¹³⁷Cs Surficial Concentrations (pCi/kg)

Figure 5-55. 60 Co Surficial Isocuric Concentrations (pCi/kg) - Close to Plant

Figure 5-56. ¹³⁷Cs Surficial Isocuric Concentrations (pCi/kg) - Close to Plant

Table 5-1. Sediment gamma scan results

Description			nuclide Gamma energy (keV)			600	Co 60C 3.23 1332	o 51	137Cs 661.62	65Zn 1115.52	2	22Na 1274.5	i 4	54Mn 834.81	580 810	Co .75	133 383	Ba 3.7	7Be 477.56	2	10Pb 6.52	40 1460	K).75	214 609.3	Bi 32	214F 351.9	P b 99	212Pb 238.63	3	208T 583.14	1 4
Image: solution of the set of th			Branching Ratio			0.99	0.99	98	0.8462	0.5075	i	0.9994	4	0.9998	0.99	945	0.08	384	0.103		0.04	0.1	07	0.46)9	0.37	71	0.431		0.861	L
Image Image <th< td=""><td>1</td><td>1.40</td><td></td><td>1.4</td><td>1</td><td>0.4</td><td></td><td>. /</td><td>C'A</td><td>0.1</td><td></td><td>0.1</td><td>. /</td><td>C''1</td><td></td><td></td><td>0.1</td><td></td><td>0.1</td><td>C'1</td><td></td><td>C'1</td><td></td><td>0.1</td><td>. /</td><td>C*</td><td></td><td>C'7</td><td></td><td>C'./</td><td></td></th<>	1	1.40		1.4	1	0.4		. /	C'A	0.1		0.1	. /	C '' 1			0.1		0.1	C'1		C'1		0.1	. /	C * 		C '7		C'./	
Starte Link and in b AgeBBB functions of default angles. V V V V <	sample mass(g)	depth(in)	station	lat.	long.	pC1/kg	+/- pC1/kg	+/-	pC1/kg +/-	pC1/kg	+/- p	oCi/kg	+/-	pCI/kg +/	- pC1/kg	+/-	- pC1/kg	+/-	pC1/kg +/	- pC1/k	g +/-	pC1/kg	+/-	pC1/kg	+/-	pC1/kg	+/-	pC1/kg	+/- p	Ci/kg	+/-
Chellers NS Description Description Constraint Sole Constraint Sole Constraint Sole Constraint Sole Constraint Sole <	Samples collected on 19	April 2004 (prelim	inary and distant samples).																												
S2C-10020 1001 Mark Cost 1000 Mark Cost Mark Cos	2-C4-439-23 736	1	Barry Cove	43.9727	69.6797		0.5	5.8	2.6 7.2			2.7	7.1	4.7 7	.1 1.9) 5.	.9		28.9 48	3.4		11796.3	347.6	419.7	31.8	489.5	29	775.7	26.8	210.9	15
Scheller	2-C4-439-24 272.7	2	Barry Cove	43.9727	69.6797		38.4	17.6	7.5 16.1	12.4	33.6			7.9	11					340	.8 651.6	6 16627.4	679.4	628.4	62.3	665.2	59.7	1088.6	52.7	314.3	30.7
2 C L M 20 2 M M 20 A M 20 A M 20 A M 20	2-C4-439-25 339.6	3	Barry Cove	43.9727	69.6797		12.4	13.3	16.9 11.4			16.3	11.3	33.1 10).9					280	.9 532.8	14183.8	563	363.6	46.7	534.2	47.7	811.4	41.6	242.9	24.7
1 1	2-C4-439-26 379.1	4	Barry Cove	43.9727	69.6797				12.4 9.2			8.6	10	18.4 11	.9 5.6	5	9 79.4	70.8	3.2 58	3.1 77	.4 388.5	13628.6	509.3	527.9	46.5	491.9	44.5	787.5	38.7	189.5	22.2
Control Destroy Destroy <t< td=""><td>2-C4-440-27 329.9</td><td>5</td><td>Barry Cove</td><td>43.9727</td><td>69.6797</td><td>10</td><td>12.5 -</td><td></td><td>14.5 12.6</td><td></td><td></td><td>3</td><td>9.9</td><td>5.2 8</td><td><u>8.9 1.9</u></td><td>$\frac{9}{8}$</td><td>.5 35.1</td><td>74.6</td><td>118.9 92</td><td>2.1</td><td></td><td>12662.1</td><td>536.3</td><td>432.1</td><td>46</td><td>543.7</td><td>47.6</td><td>668.7</td><td>40.1</td><td>199.4</td><td>$\frac{23.6}{20.5}$</td></t<>	2-C4-440-27 329.9	5	Barry Cove	43.9727	69.6797	10	12.5 -		14.5 12.6			3	9.9	5.2 8	<u>8.9 1.9</u>	$\frac{9}{8}$.5 35.1	74.6	118.9 92	2.1		12662.1	536.3	432.1	46	543.7	47.6	668.7	40.1	199.4	$\frac{23.6}{20.5}$
Schular Barr Gu Schular Barr Gu Schular Schular <t< td=""><td>2-C4-440-28 446.7 2 C4 440 29 304 3</td><td>0</td><td>Barry Cove</td><td>43.9727</td><td>69.6797</td><td></td><td>173 154</td><td>15.8</td><td>8.9 8.3 47.1 13.9</td><td>174.8</td><td>21.4 40.0</td><td>0.7</td><td>12.3</td><td>0.5 5</td><td>2.8 7.9</td><td>/ 8. 2 0</td><td><u>4 114.9</u> 2 15.2</td><td>92.3</td><td>8.2 52</td><td>241</td><td>1 481 0</td><td>13155.9</td><td>4/0.5</td><td>432.5</td><td>4Z</td><td>546.0</td><td>41.5 53.4</td><td>815.2 071.6</td><td>33</td><td>236.6</td><td>20.5</td></t<>	2-C4-440-28 446.7 2 C4 440 29 304 3	0	Barry Cove	43.9727	69.6797		173 154	15.8	8.9 8.3 47.1 13.9	174.8	21.4 40.0	0.7	12.3	0.5 5	2.8 7.9	/ 8. 2 0	<u>4 114.9</u> 2 15.2	92.3	8.2 52	241	1 481 0	13155.9	4/0.5	432.5	4Z	546.0	41.5 53.4	815.2 071.6	33	236.6	20.5
Autorial The Cala Autorial	2-C4-440-29 304.3 2-C4-440-30 266.5	8	Barry Cove	43.9727	69.6797	11.9	13.9 5	9	101.3 25.9	12.7	27.3				3.2	2 11	4 76.7	133.6		426	7 518.2	15817.5	679.9	515.4	56.8	622.6	59.1	624.9	43.7	261.5	$\frac{25.1}{26.9}$
Cel Heal J. J	440-32	11.5-13.5	Barry Cove	43.9727	69.6797	110	Not Counted		10110 2015	12.7	2710				0.1			10010		.20		1001710	01715	01011	2010	02210	0,11	02.117		20110	2017
matrix matrix<	2-C4-440-33 327.5	13.5-15	Barry Cove	43.9727	69.6797	7.7	16.4 -		64.4 23.8			21.9	14.5	5.7 11	.5 2.3	3 7.	.9			2	467.1	11444.5	499.1	343.2	44.8	295.9	46.6	757	40.2	171.3	21.3
Janc. Here Ling Core Alor Ling Core Ling Core <thling core<="" th=""> <thling core<="" th=""> <</thling></thling>	440-31	9-11.5	Barry Cove	43.9727	69.6797		Not Counted																								
$ \begin{array}{c} 2x + 4x + 3x + 1x + 3 \\ 5x + 4x + 3x + 2x + 3x + 2x + 3x + 2x + 3x + 3$	2-NG-438-2a 748.9	S	Barry Cove	43.9727	69.6797		10.0	13.2	120.5 24.2	4.4	30.2			34.8 19	0.4 5.1	14.	.2 143.2	116.1	446.8 149	0.9 117	2 1219.1	15816.7	692	452.2	62.7	675.5	66.8	999.3	61.9	236.7	33.3
Scheman Comman Comma Comma </td <td>2-NG-438-2b 1215</td> <td>S</td> <td>Barry Cove</td> <td>43.9727</td> <td>69.6797</td> <td>8.8</td> <td>14.7 -</td> <td></td> <td>92.8 19.8</td> <td></td> <td></td> <td>9.4</td> <td>10.8</td> <td>5.4 9</td> <td>0.7 6.6</td> <td>$\frac{5}{2}$ 8.</td> <td>.6</td> <td></td> <td>470.3 100</td> <td>0.1 236</td> <td>.2 541.4</td> <td>10470.9</td> <td>433.8</td> <td>355.4</td> <td>40.5</td> <td>472.1</td> <td>46.8</td> <td>684.4</td> <td>39.9</td> <td>168.5</td> <td>$\frac{21.6}{22.6}$</td>	2-NG-438-2b 1215	S	Barry Cove	43.9727	69.6797	8.8	14.7 -		92.8 19.8			9.4	10.8	5.4 9	0.7 6.6	$\frac{5}{2}$ 8.	.6		470.3 100	0.1 236	.2 541.4	10470.9	433.8	355.4	40.5	472.1	46.8	684.4	39.9	168.5	$\frac{21.6}{22.6}$
224-489 35. 6 Chewaik Carp, 07:11 07:11 07:10 10:10 15:10 16:10	2-C4-438-4 343.8	1	Chewonki Camp	69./111	69./111		/.9	8.3	15.9 11.6					20.1 10		5 /. 7 7	.8 23.6	69.4 56.6	<u> </u>	5.7 569	.1 342.1	10264.6	481	316.8	42.4	318.1	42.2	943.4	40.5	230.1	23.6
Schells Soc 4 Oberry Comp Oberry Comp <td>2-C4-438-6 395 3</td> <td>3</td> <td>Chewonki Camp</td> <td>69.7111</td> <td>69.7111</td> <td>1.5</td> <td>9.0 12.</td> <td>7.2</td> <td>40.7 15.7</td> <td></td> <td></td> <td>14.8</td> <td>11.9</td> <td>11.5 8</td> <td>.2 7.7</td> <td>5 8</td> <td>6 11.7</td> <td>83.9</td> <td>43.4 79</td> <td>0.4 1030</td> <td>2 578.4</td> <td>10948.7</td> <td>465.6</td> <td>275.5</td> <td>39.3</td> <td>453.8</td> <td>39.6</td> <td>906.7</td> <td>38.2</td> <td>239.7</td> <td>23</td>	2-C4-438-6 395 3	3	Chewonki Camp	69.7111	69.7111	1.5	9.0 12.	7.2	40.7 15.7			14.8	11.9	11.5 8	.2 7.7	5 8	6 11.7	83.9	43.4 79	0.4 1030	2 578.4	10948.7	465.6	275.5	39.3	453.8	39.6	906.7	38.2	239.7	23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-438-7 356.4	4	Chewonki Camp	69.7111	69.7111	10.6	11.9 6.4	9.4	122.1 21.6	6.3	20.6			15.4 12			376.8	130.4	133 83	3.5		11098.1	482.2	291.2	42.6	372.3	44.2	936.7	42	251.9	24
2-04-088 SS8 5 Chewark Camp 0711 0711 071 071 071 0711	2-C4-438-8 358.8	5	Chewonki Camp	69.7111	69.7111		1.9	7.4	155.7 23.3	110	36.8				7.1	9.	.1 109.7	103.1		18	396.3	12038.4	496.6	311.3	41.8	384.7	43	993.5	40.6	218	22.1
2-24-889 382.2 6 Chewalt Case 0.911 0.911 <td>2-C4-438-8 358.8</td> <td>5</td> <td>Chewonki Camp</td> <td>69.7111</td> <td>69.7111</td> <td></td> <td> 1.9</td> <td>7.4</td> <td>155.7 23.3</td> <td>110</td> <td>36.8</td> <td></td> <td></td> <td></td> <td> 7.1</td> <td>9.</td> <td>.1 109.7</td> <td>103.1</td> <td></td> <td> 18</td> <td>396.3</td> <td>12038.4</td> <td>496.6</td> <td>311.3</td> <td>41.8</td> <td>384.7</td> <td>43</td> <td>993.5</td> <td>40.6</td> <td>218</td> <td>22.1</td>	2-C4-438-8 358.8	5	Chewonki Camp	69.7111	69.7111		1.9	7.4	155.7 23.3	110	36.8				7.1	9.	.1 109.7	103.1		18	396.3	12038.4	496.6	311.3	41.8	384.7	43	993.5	40.6	218	22.1
23X2-44 48 107 8 Cheward Code 67.11 <th< td=""><td>2-C4-438-9 382.2</td><td>6</td><td>Chewonki Camp</td><td>69.7111</td><td>69.7111</td><td>3.2</td><td>9.3 4.9</td><td>8.4</td><td>118.3 20.4</td><td></td><td></td><td>4.3</td><td>8.7</td><td></td><td> 5.3</td><td>3</td><td>7 153.5</td><td>79.7</td><td>62.6 59</td><td>9.9 566</td><td>.3 366.6</td><td>10339.9</td><td>452.6</td><td>285</td><td>39.7</td><td>326.6</td><td>40.5</td><td>803.5</td><td>36.5</td><td>214</td><td>20.6</td></th<>	2-C4-438-9 382.2	6	Chewonki Camp	69.7111	69.7111	3.2	9.3 4.9	8.4	118.3 20.4			4.3	8.7		5.3	3	7 153.5	79.7	62.6 59	9.9 566	.3 366.6	10339.9	452.6	285	39.7	326.6	40.5	803.5	36.5	214	20.6
22 Current (and bit (a)) Solution (a)	2-NG-441-46a 1274.9	S	Chewonki Creek	69.7111	69.7111	7	9.1 3.1	6.1	92.4 16.7	0.9	14.4	11.9	9.4	6.1 7					623.8 132	2.8 198	.6 494.8	9121	400.9	329.5	36.9	372.5	39.3	572.9	36.2	152	18.5
$\frac{1}{224440.37} \frac{1}{233} \frac{1}{234} = \frac{1}{208} \frac{1}{208} \frac{1}{233} \frac{1}{234} \frac{1}{2$	2-NG-441-46b 973.3	<u>S</u>	Chewonki Creek	69.7111	69.7111	16.4	10 7.1	8.6	46.3 12.8	81 2	25.9	18.5	9.8	14.1	8 0.4	1 0	5 30.4	94.3	380.8 118	3.7 147	.4 792.7	7996	430.1	229.6	37	305.8	45	506.3	39.1	221	18.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-440-34 397.7 2-C4-440-35 313.8	2	Long Creek	43.9397	69.6983	86	13 33	14.7	363 2 32 3	14.2	23.3	20.8	14 7	4.8 10	1.4 11.7	0.	.5 99	90.9	78 66	55	9 369 9	7213.8	524.1	433.2 540.9	47	632.3	47.5 57.4	1312.1	43.7	356.4	23.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-440-36 373.3	3	Long Creek	43.9597	69.6983	13.4	13.4 14.0	11.8	601.8 32.6			1.5	15.8	1.2 8	3.5 2.3	3 7.	.6		65.7 75	5.3 956	.6 481.2	2 14068.8	532.2	516.6	44.4	473	49.8	1000	43.7	263.4	25.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-440-37 322.1	4	Long Creek	43.9597	69.6983	30.9	17.3 8.4	8.4	912.5 41.2	17.5	21.1			8.7 8	3.8 5.7	9.	.8					12699.7	548.8	422.1	50.4	430.1	51.8	994.9	46.7	226.1	27.7
$\frac{2-(4+44-0)}{1.324} = 1$ $\frac{2}{2} \left(\frac{4}{444} - \frac{3}{324} - \frac{3}{2} \right) = \frac{3}{2} \left(\frac{3}{2} - \frac{3}{2} $	2-C4-440-38 332.7	5	Long Creek	43.9597	69.6983		14	13.2	704.2 37.2			10.8	11.6	8.5	10							13920.5	553.5	417	49.3	482.7	50.9	991.6	45.7	298.7	26
2-24-444-40 324.1 7 Long Creek 43.9597 69.0983 12 82 82 7 2.6 88 8 7.3 - - 42.9 99 93.3 81.8 880.7 52.22 92.0 48.2 95.2 10010 77.2 48 87.1 15.4 10010 77.1 48.5 10010 77.1 48.7 15.4 10010 77.1 48.5 10010 77.1 48.5 10010 77.1 48.5 10010 77.1 48.5 10010 77.1 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 10000 78.6 48.1 48.1 10000 78.6 48.1 48.1 10000 78.6 48.1 48.1 10000 100000 100000	2-C4-440-39 421.8	6	Long Creek	43.9597	69.6983	6.4	9.3 3.8	6.3	228.6 25.3			6.7	10.4	6.8 9	0.8 6.5	5 7.	.7		29.1 62	2.6 243	.5 355.4	10355.4	438.8	333.9	38.8	356.1	40.4	834.8	36.8	225.5	21.7
224-441-41 365.6 8 Long (resk 4/3997) 66/98 1 154 169 - - 106/112 473.4 342.5 24.2 412.6 206.3 186 57.5 57.3 46 67.5 76.6 85.6 10 213.4 57.5 4 61.6 27.5 24.4 41.9 20.4 43.9 42.7 42.6 34.5 18.5 10.0 20.4 44.9 20.4 43.9 21.0 43.8 41.9 20.4 43.9 21.0 43.8 41.9 20.4 43.4 43.9 21.4 43.9 21.0 43.8 41.9 20.4 43.9 21.0 43.9 43.9 21.4 43.9 21.0 43.8 43.9 21.4 43.9 21.0 43.8 43.9 21.4 43.9 21.4 43.9 21.0 43.8 31.0 <td>2-C4-441-40 324.1</td> <td>7</td> <td>Long Creek</td> <td>43.9597</td> <td>69.6983</td> <td>11.8</td> <td>13.7 5.0</td> <td>10.5</td> <td>184.1 24</td> <td>. 72</td> <td>21.9</td> <td>2</td> <td>8.8</td> <td>8 7</td> <td>3</td> <td></td> <td> 42.9</td> <td>93</td> <td>93.3 81</td> <td>.8 886</td> <td>.7 522.2</td> <td>9925.9</td> <td>482.6</td> <td>295.4</td> <td>43.6</td> <td>344.4</td> <td>45</td> <td>808.5</td> <td>40.3</td> <td>262</td> <td>23.2</td>	2-C4-441-40 324.1	7	Long Creek	43.9597	69.6983	11.8	13.7 5.0	10.5	184.1 24	. 72	21.9	2	8.8	8 7	3		42.9	93	93.3 81	.8 886	.7 522.2	9925.9	482.6	295.4	43.6	344.4	45	808.5	40.3	262	23.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-441-41 365.6	8	Long Creek	43.9597	69.6983	2.2	8.2 13.5	9.2	172.8 22.1			19.6	9.8		6.2	$\frac{2}{1}$	1 8.4	87.9	13.4 66	5.9 (1		10610.2	473.4	332.1	42.3	402.5	42.6	786.5	38.2	207.7	$\frac{22.9}{20.7}$
$\frac{1}{2} - (2+4) + 4 - 483 = 10 - (2-6) + 4 - (2-6) + 10 - (1-6) + 4 - (2-6) + 10 - (1-6) + 10 - (2-6) + 10 $	2-C4-441-42 3/8.5	9	Long Creek	43.9597	60 6082	1.1	13.4 1.0	12.0	108.5 18.5	121.0	50.5	5.2	16.0	2.0	0.7 3.4 11 0.5	0.	.1 0/.3	0/.0	38.9	6		10582.9	454	394.5	51.2	403.5	41.4	/83.1	33.0 42.7	100.7	20.7
$\frac{2(2+44)(44)}{2+36+3} + \frac{3997}{9} (9988) 3.7 + 12 8.1 7.3 7.4 139 + - 76 9.7 99 6.8 10.7 7.9 12.6 56.3 192.1 7.6 135.7 395 1003.7 403 308.8 4.0 32 12.3 0.13 12.2 195 185 2.2 - 2 - 4 3997 (9988) 4.6 9.1 92 7.1 1159 196 - 2 8 7 94 9 - 1 127 487 1435.2 144 - 1 38.7 395 1003.7 403 308.8 4.0 4.2 32 3.3 0.13 12.2 195 185 - 2 - 4 - 7 - 7 19.1 15 18.8 176 42.7 526 1489 645 647.2 142 44 - 4 - 4 1013 96633 5 8 7 7.2 64 14013 96633 5 8 7 7.2 64 14013 96633 5 8 7 7.2 64 14013 96633 5 8 7 7 2.8 44.2 53 13.1 2.2 12 13.6 34.4 55 13.1 42.7 1.1 8.8 179 5 357 7.12 8 44.2 7 526 1489 645 647.2 142 8 14 18.2 144 1 13 8.8 1956 357 7.12 8 44.2 7 526 1489 645 647.2 142 8 145 112.1 97 747 947.9 340 - 2 - 4 14.2 14.2 1 13.8 14.2 7 1.1 19.1 19.1 19.1 19.1 19.1 19.1 19.$	2-C4-441-44 485.1	11	Long Creek	43.9597	69.6983	15.7	11.9 14	8.5	60.7 13.9	35.4	16.1	9.9	10.9	3.8	ii 9.3	, . , .	1 46.9	77.7	49.1 7.	7 32	9 412.8	9318.5	387.3	306	32.4	344.7	32.5	621.3	29.6	179.6	$\frac{23.3}{16.2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-441-45 459.5	12	Long Creek	43.9597	69.6983	3.7	12 8.1	7.3	78.4 13.9			7.6	9.7	9.9 6	5.8 10.7	7.	.9 12.6	56.3	192.1 76	5.6 135	.7 309.5	10003.7	405.3	360.8	34.1	352	32.3	613.1	32.1	195	18.5
$ \frac{1}{2 \text{C}4438 \cdot \text{l}} \ 781.5 \ 8. \ 1 \text{Creek} \ 43.997 \ 90.0983 \ 12.5 \ 13.9 \ 20.5 \ 11.8 \ 120.8 \ 19.8 \ $	2-NG-438-1a 1335.2	S	Long Creek	43.9597	69.6983	6.6	9.1 9.2	7.1	115.9 19.6			2.8	7	9.4	9		127.4	87.1	435.2 144	1.4		9736.7	396.7	385.6	41.6	462.6	39.2	779.2	37.5	184.7	20.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-NG-438-1b 781.5	S	Long Creek	43.9597	69.6983	12.5	13.9 26.5	11.8	120.8 19.8						17.9) 11.	.5 18.9	179.6	355.7 172	2.8 442	.7 526.5	14899	645.6	647.2	61.2	541.9	64.5	1152.1	59.7	247.9	34
2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	2-C4-438-10 411.6	1	Wiscassett	44.0013	69.6633		5.8	7	72.6 12.1	83.6	31.4	25.3	13.1	4.2 7	.1		11.3	77.3	25.8 68	3.5 347	.6 300.8	7849.5	389.1	284.8	38.2	344	38.1	742.8	34.3	186.2	20.4
$\frac{1}{2} - 4 - 43 + 12}{3 - 3} = \frac{3}{2} + \frac{1}{2} + $	2-C4-438-11 368.3	2	Wiscassett	44.0013	69.6633	5.7	9.8 4.6	8.2	81.5 13.8	98	34.4	6.4	9.1	0.8 9	0.9 0.4 1.2				46.6 58	3.6 187	.6 338.4	8951.2	452.5	395.6	44.6	429.2	43.4	867.2	39.5	193.9	$\frac{24.6}{25.2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-438-12 $510.92-C4-438-13$ 338	3	Wiscassett	44.0013	69.6633	27.9	12.0 1.1	12	94.4 16	99.0	28.0	10.5	10.8	22.6 10	0.4 1.3	8.	.9	86.6	59.5 82	2.3	1 524	10012.6	529.8	376.6	48.5	379.8	49.1	973.8	44.2	238.8	25.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-439-14 364.6	5	Wiscassett	44 0013	69.6633	14.9	10.7 -		79.7 16.4	187.1	36.5	8.9	11.7	17.8 9	$\frac{1}{21.7}$	7 9	8 54	66.5	53.8 60)7		9336.8	446.4	317.8	40.1	462.7	42.1	735.2	37.2	187.8	$\frac{24}{21.9}$
$\frac{1}{2} - (2-439 - 16 - 298.4 7 \\ (2-4439 - 17 - 310.1 8 \\ (2-4439 - 17 - 310.1 8 \\ (3-24-43) - 10.1 8 \\ (3-24-43) - 10.1 8 $	2-C4-439-15 347.4	6	Wiscassett	44.0013	69.6633	8.7	9.7 -		84.8 15.6	22.7	18.9	4.7	9.2				46.7	111.7	137.7 63	3.8		9070.6	441	321.5	42.2	333	42	780.6	38.4	163.8	21.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-439-16 298.4	7	Wiscassett	44.0013	69.6633	2	11.5 47.9	14.6	120.7 23.2	216.3	43.6	21.9	15.8	13 9	.9				180.8 75	635	.2 341.3	9103.3	485.8	541.7	50.6	519.5	50.9	608.9	39.5	220.5	27.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-439-17 310.1	8	Wiscassett	44.0013	69.6633	1	11.1 17.5	14.5	91.1 16.5	127.3 4	41.6	15.4	11.9	28.6 17	.9 8.2	2 8.	.7		90.2 97	2.2		10519.4	509.5	364.7	46.1	408.3	48.4	848.9	41.8	205.3	25.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-439-18 397.9	9	Wiscassett	44.0013	69.6633		7.4	9.7	39.1 16.2	73.7 2	23.7	10.4	10	8.3 7	.9 2.3	<u> </u>	.3 80	61.6	57.5 63	8.8 156	.7 312.8	6904.4	356.3	273.7	33.7	254.4	30.6	537.8	30	124.9	16.9
2-2-4-32-20 42.5 11 Wiscassett 44.0013 69.6633 5.7 7.7 14.9 10.8 35.3 2.50 - - - - - - 11.5 291.7 611.89 33.5 2.29.7 20.7 20.2 32.2 40.49 27.4 11.7 15.6 27.7 17.4 27.7 17.4 17.7	2-C4-439-19 377.3	10	Wiscassett	44.0013	69.6633	14.4	10 -		90 14.6	13.4	36	3.5	9.1	8 9	11	8.	.9 61.4	62.7		573	./ 355	9344.1	433.8	272.1	37.9	361.1	39.7	597	33.6	151.3	19.5
1.2 1	2-04-459-20 423.2 1/30-21	11	Wiscossett	44.0013	69 6622	5.7	/./ 14.:	8.9	10.9 10.8	33.3	23.0				1	3.	.4			1/3	.4 291.7	0118.9	555.0	229.3	29.1	200.2	32.2	404.9	∠1.4	11/.0	13.0
1.01 22 1.0 1.0000 0.0000 </td <td>439-22</td> <td>13</td> <td>Wiscassett</td> <td>44.0013</td> <td>69 6633</td> <td></td> <td> Not Counted</td> <td></td>	439-22	13	Wiscassett	44.0013	69 6633		Not Counted																								
Image: Note that the state in the state state in the state state in the state state in the state in	438-3	S	Wiscassett	44.0013	69.6633		Not Counted	+																							
Samples collected on 11 une 2004 (preliminary and distant samples) Image: collected on 11 and and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signal samples (preliminary and distant samples) Image: collected on 11 and a signa																															
2-C4-43-10 247.6 1 eddy 43.9944 69.6494 7.3 10.7 62.8 21.7 77.4 30.7 4 99.9 1.2 14.7 968.5 553.7 379.2 45.8 546.2 52.7 628.5 47.9 202.5 26.3 443-12 1 eddy 43.9944 69.6494 13.7 17 1.7 8.6 63.6 19.8 71.5 30.7 21.8 96.6 59.4 83.2 9688.5 553.7 379.2 45.8 546.2 52.7 628.5 47.9 202.5 26.3 443.11 2 eddy 43.9944 69.6494 Not Counted 27.2 10.6 8.7 10.2 168.1 106.3 339.9 439.1 8170.6 448.7 311.1 43.8 376.1 46.2 570.2 37.2 158.4 23 443.11 2 eddy 43.9944 69.6494 23.6 30.5 2.1	Samples collected on 11.	June 2004 (prelimi	nary and distant samples)																												
443-12 1 eddy 43.9944 69.6494 Not	2-C4-443-10 247.6	1	eddy	43.9944	69.6494	7.3	10.7 -		62.8 21.7	77.4	30.7	4	9.9	1.2 14	.7		21.8	96.6	59.4 83	3.2		9688.5	553.7	379.2	45.8	546.2	52.7	628.5	47.9	202.5	26.3
2C4-443-5 307.0 2 eddy 43.9944 69.0494 15.7 17 1.7 6.0 63.0 19.8 71.5 30.7 27.2 10.6 8.7 102 106.5 539.9 439.1 81/0.6 448.7 319.1 43.8 376.1 46.2 570.2 37.2 158.4 23 443-11 2 eddy 43.9944 69.6494 Not Counted -	443-12		eddy	43.9944	69.6494	127	Not Counted	07	62 (10.0	715	20.7			27.2 10	0.7	1 10	2 1/0 1	106.2		220	0 420 1	0170 6	140 7	210.1	12.0	2761	46.2	570.2	27.0	150 4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-443-9 307.6 AA3-11	$\frac{2}{2}$	eddy	43.9944	09.0494 69.6404	13./	I/ I.	8.6	03.0 19.8	/1.5	50.7			27.2 10	0.0 8.7	10.	.∠ 168.1	106.3		339	.9 439.1	81/0.6	448./	519.1	43.8	3/6.1	40.2	570.2	31.2	138.4	23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-443-8 165.6	3	eddy	43.9944	69.6494	23.6	30.5 2 1	13.1	69.2 22 5	32.3	37.1	5.9	14.9	20.9 14	.4 10.2	2 13	5 69.9	116.6	133.3 166	5.9 531	7 665 3	10508.6	711.1	448.2	62.5	305.9	56.9	468.8	52.8	193.3	35.8
2-C4-443-6B 322.6 5 eddy 43.9944 69.6494 27.1 13.1 34.8 14.9 51.7 30.9 12.1 12.1 113.7 387 10391.1 499.3 474.2 46.7 344.5 46.2 799 41.9 190.9 20.4 2-C4-443-6A 402.6 6 eddy 43.9944 69.6494 11.8 9.1 11.6 6.9 9.6 78.7 97.5 59.1 154.9 491.5 9988.2 440.7 349.8 38.9 429.8 39.3 646 34.6 177.1 20.7	2-C4-443-7 341.6	4	eddy	43.9944	69.6494				56.1 14.5	90.8	32.8	24.8	10.6	12.5 10	0.8 1.2	2 7.	.4		35.9 59	0.9		7743	439	339.1	39.4	395.1	32.4	480	34.7	133.2	20
2-C4-443-6A 402.6 6 eddy 43.9944 69.6494 16.5 9.4 11.8 9.1 95.5 18.8 11.8 9.1 11.6 6.9 9.6 78.7 97.5 59.1 154.9 491.5 9988.2 440.7 349.8 38.9 429.8 39.3 646 34.6 177.1 20.7	2-C4-443-6B 322.6	5	eddy	43.9944	69.6494		27.1	13.1	34.8 14.9	51.7	30.9	12.1	12.1		23.3	3 14.	.9 147.1	84.4		113	.7 387	10391.1	499.3	474.2	46.7	344.5	46.2	799	41.9	190.9	20.4
	2-C4-443-6A 402.6	6	eddy	43.9944	69.6494	16.5	9.4 11.8	9.1	95.5 18.8					11.8 9	0.1 11.6	6.	.9 9.6	78.7	97.5 59	0.1 154	.9 491.5	9988.2	440.7	349.8	38.9	429.8	39.3	646	34.6	177.1	20.7

			nuclide		60Co	60Co	137	Cs	65Zn	22N	a	54Mn	5	58Co	133F	Ba	7Be	210F	°b	40K		214Bi	214	Pb	212P	b	208T1	
			Gamma energy (keV)		1173.23	1332.51	661.	.62	1115.52	1274.	54	834.81	8	10.75	383.	.7	477.56	46.5	2	1460.7	5	609.32	351	.99	238.6	3	583.14	
			Branching Ratio		0.9986	0.9998	0.84	-62	0.5075	0.999	94	0.9998	0.	.9945	0.088	84	0.103	0.04	4	0.107		0.4609	0.3	71	0.431	1	0.861	
					<u> </u>	<i>C</i> : <i>n</i>		,	<u></u>	C !! D	/ 0		1 01		010	,		C !! A	1 0	• 0	,	<u> </u>	C: 0	,	C 1.0			_
sample	mass(g) de	epth(in)	station lat.	long.	pCi/kg +/-	pCi/kg +/	- pCi/kg	+/-	pCi/kg +/-	pCi/kg	+/- pCi	i/kg -	+/- pCi/l	kg +/-	pCi/kg	+/-	pCi/kg +/-	pCi/kg	+/- pC	i/kg	+/-	pCi/kg +/-	pCi/kg	+/-	pCi/kg	+/- pCi	/kg +/	/-
2-CA-443-64	402.6	6	eddy 13 9944	69 6494	165 94	11.8 0	01 05 5	18.8				11.8	91 11	16 69	9.6	78 7	97.5 59.1	154.9	/01.5 00	88 2	440.7	3/9.8 38	0 120.8	30.3	646	34.6 1'	77 1 20	0.7
2-C4-443-5	393.6	7	eddy 43.9944	69.6494	19.9 12.9	17.7 9	5 43.7	12.3	106 32.8			0.5	7.2 8	8.4 10.2	9.0		31.2 93		9	81.7	421.4	322.5 39	9 423.5	39.5	628.9	38.3 1	$\frac{7.1}{92.9}$ 21	<u>).7</u> 1.3
2-C4-443-4	374.6	8	eddy 43.9944	69.6494		4.1 13	.5 67.7	15.9	64.7 24.1	3.5	6.8		(6.8 7.9	63.9	85.5			10.	883.1	461.2	325 40.	9 392.8	41.9	825.8	37.7 1	76.1 19) .1
2-C4-443-3	395.6	9	eddy 43.9944	69.6494	5.3 9.7	19.8 8	.7 100.3	20.6	15.2 24.3	7.4	9.4	18.6	8.4 2	2.1 7.3			24.8 56.1		10	60.8	452.5	383.2 40.	9 404.7	41.1	875.7	38.3 2.	50.8 21	1.3
2-C4-443-2	430.6	10	eddy 43.9944	69.6494	14.7 9.1	1.1 8	.6 85.1	19.6	154.9 31.3	2.3	8				26.9	67.4	11.4 90.8	140.6	469.4	9862	418.7	434.6 41.	3 441.9	39.7	806.6	35.4 23	33.3 20).4
2-C4-443-1	366.6	11	eddy 43.9944	69.6494		21.6 12	.5 94.7	17.3				1.2	8 12	2.1 7.4			63.6 67.5		90	507.3	456.9	410.6 42.	7 433.9	42.8	819.6	39 1	75.6 23	3.5
2-NG-444-1	1275.5	12	eddy 43.9944	69.6494	5.2 8.7	1 7	.9 32.6	18.6		3	7.6	10.7	7.8	4 6.9	181.2	98.3	405.6 105.4		80	502.2	387.1	394 39.	5 424.8	40.4	686.7	37.6 16	57.5 19).8
2-C4-442-12	445.6	1	pottle cove 43.9969	69.6708	10.4 13.8		45.9	16.9		3.4	8.5		7	7.8 6.1	229.9	79.3	316.5 82.8	407.5	264.9 70	056.1	351.3	284.9 31.	4 263.6	33.1	525.7	29.4 12	28.5 17	$\frac{1.7}{1.7}$
2-C4-442-11	314.6	2	pottle cove 43.9969	69.6708	15.2 14.8	9.5 9	12 71 3	12.7		21.9	14.2	0.3	9.4 4	2.8 9.7	83.4	86.8	10.4 83.9	144	573.7 10	890.2	454.5 513.4	420.6 4	0 345.1	41	714.1	<u> </u>	$\frac{35.1}{11.4}$ 21	$\frac{1.0}{2.7}$
2-C4-442-10	301.6	4	pottle cove 43.9909	69.6708	40.9 21.3	68 9	12 71.3	22.2	6.5 24.4			11.5	9.5 2	2.8 9.1	115.2	83.6	20.3 69.8	97.3	443.3 110	90.9	537.3	312.4 43.	9 493	52.6	794.6	42.5 1	92.8 25	<u></u> /
2-C4-442-8	308.6	5	pottle cove 43.9969	69.6708			72.9	18.4				8.4 1	10.8				173.5 126.1	59.4	429.8 122	244.2	538.7	361.9 44.	5 493.3	48.1	766.4	42.3 2	21.2 24	4.6
2-C4-442-7	251.6	6	pottle cove 43.9969	69.6708			127.4	24.4		20.7	17.3	2.6	9.5 3	3.4 10.6				194.4	572.2 110	570.1	614.1	339.1 56.	7 452.8	54.8	833.2	49 2	25.3	29
2-C4-442-6	245.6	7	pottle cove 43.9969	69.6708		14.8 14	.2 49.7	18.9	43.6 24.2		:	11.2	13 5	5.2 10.6			89.9 96		10′	69.6	595.7	353.1 52.	3 331.6	53.9	727	48.5 2	38.2 26	5.4
2-C4-442-5	278.6	8	pottle cove 43.9969	69.6708	11.9 13	4.9 10	.5 71.2	20.5					4	4.6 11.3	97	102	70.4 93.2	48.3	340.7 97	30.3	532.9	274.9 52.	7 427.1	49.3	736.8	45.7 1.	53.6 25	5.4
2-C4-442-4	306.6	9	pottle cove 43.9969	69.6708			101.4	19.8	34.9 33.4		2	28.9 1	13.3		45.3	84.3	12 110.1		132	262.6	569.9	448 50.	5 478.3	52.4	997.7	45.8 26	57.9 26	5.7
2-C4-442-3	313.6	10	pottle cove 43.9969	69.6708	14.9 11	5.4 9	.3 86.5	20.4				15.6	10		128	92		245.7	255.9 88	898.6	481.2	383.4 41.	2 409.4	45.8	706.8	40.7 23	31.3 23	3.9
2-C4-442-2	323.6	11	pottle cove 43.9969	69.6708		4.2 9	67.9	18.3	12.2 20.4	12.1	16.4	4 1	13.4					389.2	310.9 90	0024	486.5	347.3 44.	9 422.6	46.3	790.3	41.6 25	<u>50.3</u> 24	$\frac{1.7}{21}$
2-NG-444-2 2-C4-442-1	174.6	12	pottle cove 43.9969	69.6708	38.8 21.5	5 10	25.8	18.2	<u> </u>	0.4	16.3	19.9 1 5.6 1	13.5 1	1 2 12 9		147.7	310.4 85.2	1071.6	683.8 13/	9034	413.4 804.7	<u> </u>		44	701.0 866.9	<u>59.9</u> 14 65.1 2'	+8.9 <u>1</u> 70.9 37	$\frac{21}{71}$
2-C4-445-13	459.6	12	sassanoa 43.8944	69.7661	0.7 7.3	3.9 8	23.8	13.3	13.5 24.4	7.1	8.4	1.4	5.5		52.9	50.3	159.2 90.9		6	373.5	325.8	255.1 30	5 311.3	31.9	565.4	30.9 1	16.1 16	<u>.1</u> 63
2-C4-445-12	315.6	2	sassanoa 43.8944	69.7661	8.9 12.1	7.5 8	.3 160.8	24.2		11.4	9.2				165.1	77.6	19.4 68.7	58.1	305.7 73	315.4	431.3	286.9 42.	5 336.8	45.4	599	37.9 1	59.4 23	$\frac{3.3}{3.4}$
2-C4-445-11	246.6	3	sassanoa 43.8944	69.7661	6.1 10.4	9.9 10	0.7 151	23.8	45.7 26.7				9	9.4 9.2	450.7	115	102.8 93.4	1093.5	618.3 62	227.5	468.6	306.6 46.	3 297.3	46.4	505.4	43.4 10	09.1 23	3.1
2-C4-445-10	309.6	4	sassanoa 43.8944	69.7661	10.2 10.2	20.9	8 315.2	28.6	5.5 18.1	20.4	13.9		8	8.2 7.9	127.1	117.3	59.4 99.8	521.4	406 75	524.4	437.1	272.2 42.	8 333.5	45.5	592.7	39.4 10	68.8 21	1.9
2-C4-445-9	242.6	5	sassanoa 43.8944	69.7661	19.9 15.3	5.6 11	.6 329.8	34.1	17 26.5	9.4	10.8	17.8 1	10.6	3.1 11.3	222.7	121.1	40.4 122.2		82	259.2	533.9	224.2 47.	1 346.2	53.9	791.7	48.6 18	39.1 27	1.3
2-C4-445-8	284.6	6	sassanoa 43.8944	69.7661		11.9 12	.5 292.6	29.6	23.8 30.7	5.2	10.1	6.8	9.4 5	5.5 9.7	203.4	127.9		769.1	487.4 69	942.9	457.4	279.1 39.	2 273.7	47.6	653.2	42.3 1.	38.7 24	1.6
2-C4-445-7	263.6	7	sassanoa 43.8944	69.7661	17.1 13	6.5 8	5 161.8	23.3	2.1 18.8	9.9	13.1	6.6 1	11.7 3	3.6 14.7			27.9 88.1	640.2	464.1 84	79.7	479.6	228.5 40.	9 315.7	48.6	779.9	44 19	$\frac{3.4}{10.4}$ 24	4.1
2-C4-445-6	251.6	8	sassanoa 43.8944	69.7661	8.4 11.7	0.9 11	.5 144.8	30.5				10.3 1	17.5 25	5.2 11.1	36.8	89.9			417 7	08.7	502.1	43/ 56.	3 401.3	12 5	750.2	4/.5 2	18.4 28	$\frac{3.5}{1.4}$
2-C4-445-3	295.0	10	sassanoa 43.8944	69.7661	4.1 11.5	4.8 12	1 123.8	25.0	10.2 21.3	4.4	9.1				142.2	139.7	69.5 90.9	409.0	577.1 100	065 5	601.9	233.9 50	5 <u>299.5</u> 1 268.6	43.3 57.7	1014.1	41.3 1. 55.8 3	$\frac{38.0}{12.6}$ 21	9.4 9.4
2-C4-445-3	266.6	10	sassanoa 43.8944	69.7661		16.6 9	0.7 89	18.2		14.7	17.5	19.1	9.8 6	6.6 12.4	130.3	139.2		431.2	357.7	8855	518	284.9 49.	9 373.5	59.5	873	47.3 3	$\frac{12.0}{11.1}$ 30	$\frac{1}{0.4}$
2-NG-444-3	1280.5	12	sassanoa 43.8944	69.7661		8.2 8	.9 103.2	17.3	37.3 19.4			5.8	8.2		34.7	62.1	340.7 136.2	678.8	714.1 69	067.3	351.6	319.7 37.	1 396.4	40.8	724.9	36.9	170 20	J.8
2-C4-445-2	341.6	12	sassanoa 43.8944	69.7661	0.9 10.1	21.9 13	.7 52.1	16.6	32.2 19.4	10.2	12.8	3.2	9.1	1.9 7.5			70.6 83.9		88	349.1	452	277.2 42.	2 324.2	40	764	38.2	202 21	1.7
2-C4-445-1	262.6	13	sassanoa 43.8944	69.7661	1.5 15	2.6 9	.3 23.4	12.7		11.2	11.6	25.9 1	14.2 3	3.2 8.7	130.8	117.7	3.1 103.4	253.8	530.4 92	273.7	529.6	351.4 48.	6 338.5	43.5	879.5	46.5 20)5.8 29	<i>э</i> .5
Samples collecte	ed 6-9 July 20	004 (pha	ase 1)+A224:	60.600		2.6	2 (2.0	10.0	05 01 6					0 50	51.0	70.6	200.0 72.7	(10.6	170.7	05.1	0567	2017 2	7 401 5	20.6	60.1.5	21.0 1	50.0 16	
1-NG-171653	1519	<u>S</u>	1 43.960	69.698		3.6 4	62.8	12.3	95 21.6					9 5.3	51.9	79.6	299.9 73.7	610.6	241.1 6	085.1	256.7	386.7 2	/ 401.5	30.6	684.5	31.8 1:	$\frac{38.3}{26.2}$ 13	$\frac{5.8}{2.6}$
1-C4-171732	234.2	2	2 43.933	69.697	4.1 5.5	13.5 10	00.9	9.9	3.1 9.5	5.5	9.7	7.4	4.2 J	3 7	95.1	96.8	04.3 03.3 18.3 62.1	549.9 649.5	522.1 80	042.2	200.2	225.1 24.	6 173.3 7 288.2	$\frac{50.3}{42.2}$	432.4	<u>23.8</u> 13 <u>41.7</u> 1	67.5 1C	2.0 0 0
1-C4-171732	254.6	3	2 43.955	69.697	34 12	9 7	3 136.3	20	78.1 27.8	7.7	9.1	10.5	$\frac{0.7}{7.2}$ 16	64 92			215.1 100.6	639.7	508.9 9	528.9	389.1	223.6 37	8 314.1	40.4	552	39.5 1	75.5 19	$\frac{7.7}{9.5}$
1-C4-171734	262.1	4	2 43.955	69.697		8.7 8	.7 109.6	19.9		9.5	7.2				48.4	68.7	169.7 74.2	996.5	404 85	36.1	367.4	254 35.	2 299.3	40.9	584.9	38.6 1	55.1 18	8.3
1-C4-171735	294.1	5	2 43.955	69.697	3.5 10.6		116	16.7	11.1 13.1	2.5	6.4				172.6	100	93.1 82.7	175.9	377.9	8500	344.6	265.8 31.	5 329.4	39	520.8	35.1 12	29.5 16	5.1
1-C4-171736	280.6	6	2 43.955	69.697	0.6 8.1		102.8	17.8	131.6 27.9	1.3	6.7	14.3	9.1	1.4 5.9	48.2	102.7		646.1	468.3 92	234.4	367.3	222.5 3	2 227	31.3	475.7	35.9 14	43.6 17	7.4
1-C4-171737	358.8	7	2 43.955	69.697	12.9 9.1	5.3	6 190.5	16.8		6.1	7	4.5	6.1 8	8.3 6.9			78.7 48.7	942.1	294.7 84	62.6	313.3	228.4 29.	2 290.3	33.8	513	30.7 1.	59.3 15	5.6
1-C4-171738	338.6	8	2 43.955	69.697	1.5 6.9	12.3 7	.7 248.6	19.4				13.2	7.3 8	8.6 6.4	193.9	116.8	16.8 62.8	594.4	446.1 104	50.7	353.6	259 31.	4 255.2	35.3	676.4	34.9 14	49.9 16	<u>5.6</u>
1-C4-171739	364.3	9	2 43.955	69.697	18.8 10.4		237.6	18.5	15 12.5	3.5	6.2	6.2	6		18.6	54.8	45.4 77.0	669.2	350.6 10	52.2	338	273.2 28.	2 339.9	32.4	634.7	34 1	<u>/8.6 15</u>	$\frac{5.7}{2}$
1-C4-1/1/40 1-C4-171741	301.6	10	2 43.955	09.09/ 69.607	1.0 /		1/5.4	18.9	9.9 14.5		6.1	5.2	/.ð	62 88	55	01.3	45.4 75.9	380.1	388.2 109	24.4	370.3	255.2 $53.$	/ <u>584</u> 1 372 7	30.8	/80.1	37.8 2:	08 5 17	3.6 7.9
1-04-171741 1-NG-171654	1300.1	11 2	2 43.955	69 697	68 62	374	95.1	14.7	95.3 17.8	1.9	6.2	7.9	8.3				205.4 71.7	439.4	203.6 94	63.7	287.2	312.7 28	1 340 5	33.3	695.2	32.8 1	$\frac{73.3}{47.1}$ 17	.0 5 1
2-NG-171655	1401.6	S	3 43.954	69.697		1.9 7	.9 103.1	15.1		1.6	9.7	1.4	6.9 9	9.6 8.1			146.2 81.7	585.2	472.7 79	87.7	371.8	181.8 39.	1 312.4	36.6	570.1	33.4 1	33.2 18	<u></u> 8.9
1-NG-171656	1421.6	S	4 43.953	69.698	10.2 6.5	7.6 5	.7 89.4	12.8				1.1	4.2 6	6.5 4.9	18.5	74.9	279.9 70.7	748.1	248.2 70	532.8	247.9	319.4 26.	1 328.4	28.9	516.5	28.8 1	37.3 13	3.7
1-NG-171657	1377.6	S	5 43.953	69.698	16.3 7.9	3.9 4	.6 96.6	11.9	22.5 21.7	12.9	6.2	11.7	5.7 7	7.6 5.6	9.5	47.1	463.7 102.7	1010	302.3 73	309.8	246.2	213.7 24.	8 247.1	31.1	483.8	27.6 14	42.9 12	2.6
1-NG-171658	1414.1	S	6 43.953	69.698	12.6 9.1	3.4 4	.4 96.9	12.5		14.8	6	0.8	4.3 4	4.6 4.3	9.3	46.2	277.1 77.8	594.4	224.5 74	57.7	250.7	250 24.	7 276.9	27.1	548	27.8 12	28.9 12	2.5
2-NG-171659	1409	S	7 43.951	69.698	18.9 10.7	16.8 9	.1 117.4	17				2.6	6.4 14	4.2 7.5	105	62.8	208.2 64.5		84	35.4	367.8	267 35.	6 340.8	40.5	570.7	32.4 12	25.4 18	3.4
2-NG-171660	1368.3	<u>S</u>	8 43.949	69.698	11 8.7	4.3 10	135.7	19.5		0.7	7	0.6	8.3		16.2	81.8	318.8 108.2	1649.8	599.5 88	326.3	384.7	245.9 30.	3 366.1	38.5	595	33 13	<u>52.8 18</u>	<u>3.7</u>
1-C4-1/1/54	281.0	1	8-1 43.949	69.698	24.0 10.6	10.8 6	93.7	14.9	9.3 16	10	8.2	2.3	ð.0 0 /	57 (0)	55	59.4	95.2 70.5	1040.1	293.6 70	564.0	318.3	258 29.	1 2/6.6	26 4	4/8.3	34.2 10	19.5 16	<u>).8</u> ∝ ∡
2-C4-1/1/55 1-C4-171756	350.6	2	8 1 43.949	69.698	<u> </u>	0.1 9 9.1 5	<u>94.1</u> 0 72.1	10.5				2.1	<u>8</u> 3	5./ 6.8		52 5	31.4 01.3 80.5 63.2	677.8	420.4 70	310.1	391.9 201 6	237.3 36.	$\frac{3}{2}$ $\frac{212.9}{211.2}$	30.4	405.7	<u> 31.9 12 29.5 1 </u>	+0.2 18	<u>4.د</u> ۸ ۸
1-C4-171757	312	<u> </u>	8-1 43.949	69 698	7.2 7.2	116 8	7 893	14.3	9.8 12.4	3 5	8	9.4	7.4 1	14 56	104.8	68.7	27.4 50.9	295.5	319.4 79	317.3	319.4	223.3 29.	5 272 1	35.2	494.0	33.1 1/	02.9 16	<u>7.4</u> 6 3
2-C4-171758	312.6	5	8-1 43.949	69.698	11.6 10.6	2.9 10	.4 92.1	15.4	7.8 29.7	21.6	14.8	5.9 1	13.2 2	2.7 10.1			13.1 78.7	344.3	319.3 100	58.2	504.4	364 42.	5 320.6	45.7	669.6	39.3 20	09.3 25	5.6
2-C4-171759	334	6	8-1 43.949	69.698	12.6 13.6	14.3 9	.8 118.8	22.5		21.5	12.5	2.2 1	11.7		18.5	79.5			98	370.4	486.2	250.3 40.	8 283.3	41.7	544.5	37 1.	54.9 21	1.2
1-C4-171760	331.6	7	8-1 43.949	69.698	10.1 8.9	4 5	.9 78.2	16.7	13.8 14.7	2.2	6.4	26.4	9		17.9	78.6	85.1 51.1	1315.9	317.2 85	550.9	324.7	246.4 32.	1 279.4	31	568.3	33.5 10	50.2 16	5.7
2-C4-171761	326.5	8	8-1 43.949	69.698	17.2 12.2	11.8 10	.3 94.4	20.2		9	9.6	2.6	8.2 3	3.2 7.5			67.6 63.7	134.8	403.6 10	69.6	504.1	274.1 4	0 303.8	42.3	649.4	38.5 19)3.3	22
2-C4-171762	298.1	9	8-1 43.949	69.698	7.1 11.6	22.1 12	.2 90.1	16.1		19	12.8	13.3	9.3 10	0.6 8.6				155.1	280.8 108	314.9	529.1	299 44.	4 278.6	44.7	763.2	43.1 2	10.5 24	1 .7

	nuclide Gamma energy (keV)	60Co 1173.23	60Co 1332.51	137Cs 661.62	65Zn 1115.52	22Na 5 1274.54 8	4Mn 580 34.81 810	Co 133Ba	7Be 477.56	210Pb 46,52	40K 1460.75	214Bi 609.32	214Pb 351.99	212Pb 238.63	208TI 583.14	1 4
	Branching Ratio	0.9986	0.9998	0.8462	0.5075	0.9994 0	.9998 0.99	0.0884	0.103	0.04	0.107	0.4609	0.371	0.431	0.861	
sample mass(g) depth(in)	station lat.	long. pCi/kg +/	pCi/kg +	/- pCi/kg +/-	pCi/kg +/-	pCi/kg +/- pCi/	kg +/- pCi/kg	g +/- pCi/kg +/-	pCi/kg +/-	pCi/kg +/- pC	i/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	· pCi/kg	+/-
1-C4-171763 326.4 10	8-1 43 949	69.698 2.1 6	8 29 5	85 1123 15		28 55 10	64 73 24	1 53		662 1 365 4 86	32 3 329	1 239.8 30.1	252 5 35 3	709.2 34	5 185	167
2-C4-171764 390.6 11	8-1 43.949	69.698 23.1	17 13.4 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.5 21.3	6.7 10.6		4 118.6	54.4 77.5	175.3 445.8 96	32.3 329.4 428.1	9 283.3 37	235.1 38.3	638.6 35	.1 188.9	20.6
1-C4-171765 249 12 1-C4-171766 3365 13	<u>8-1</u> 43.949 8-1 43.949	69.698 2.8 10 69.698 12.3 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.6 104.7 21.5 5.1 167.6 18.3	145.5 32.9	1.5 7.8 3	3.8 7.2 5 3 8 1	61.1 115.5	5 <u>115.4</u> 74.1 0 147.5 53.7	715.8 540.5 9	9161 386.	8 <u>224</u> <u>37.7</u> 5 <u>199</u> 2 <u>31</u> 1	278.6 43.4	762.1 43	.5 219.4 2	$\frac{20.3}{17.5}$
2-C4-171767 330.6 14	8-1 43.949	69.698		154.1 23		3 9.8	6.5 12.9		- 155.8 81.6	271.9 259.2	9175 469.	5 313.7 42.8	271.7 33.9	827.1 40	.7 225.3	23.6
2-C4-171768 283 15 2-NG-171664 1383.6 S	8-1 43.949 9 43.949	69.698 69.699 18.8 18	16.8 11 7 11.9 0	1.3 191.6 27.5 9.7 154 20.4	25.9 27 210.5 33	2	4.6 9.5 3	8 8.8 12.3 80.5	69.3 77.5 704 5 154 1	98	11.8 549. 53.5 476	4 <u>397.1</u> 47.7 1 429.1 40.5	300.3 48.1 346.8 39.2	780.5 44	<u>.4</u> 222.1 <u>4</u> 176.3	24
2-NG-171665 1402.1 S	10 43.947	69.699 5.1 9	.1 29.1 10	0.4 90.3 19.6		7.7 9.7	4.6 8.4	92.3 111.9	0 170.7 99.3	97	92.7 393.	4 274.4 36.6	343.9 38	594.5 34	.3 136.2	18.8
2-NG-171666 1265.9 S	<u>11</u> 43.947 12 43.947	<u>69.699</u> <u>12.6</u> 7	.7	<u> 47.2 11.2</u>	14 19.8	2 9.4 14	4.4 6.5 12.6	5 8 60.4 83.9 97.6 74	364.9 83.3 364.9 79.8	133.3 336.4 60 291.8 219.8 76	40.3 31	9 215 29.4	234.9 30.3	251.1 27	.5 132.9	16.8
2-NG-171668 1349.5 S	13 43.944	69.697 12.5 9	.5 13.2 1	1.2 86.8 18	91.8 32.3	23 10	6.4 8.4		473 131	94	87.1 404.	4 286.7 34.1	425.1 37.7	608.5 34	.8 193.8	18.8
2-NG-171669 1302.1 S	14 43.945	<u>69.699</u> 17.7 13	.8	<u> 93.5 16.4</u> 5.8 63.5 12.3	21.7 21.2	15.3 8.1 (0.7 7.9		272.8 102.7	149.1 310.8 97 290.2 154.1 80	16.3 409. 59.4 265	3 348.1 37.4 7 288 3 27 3	448.1 40.2	663.1 35 631.9 31	.9 142.2	$\frac{22}{14.1}$
2-NG-171674 1450.1 S	16 43.941	69.697 23.7 14	.1 0.7	7 74.9 12.8	13 15.1	9.2 7.5	3.6 8.2	149.6 75.2	2 181.9 111.8	721.6 493.8 92		3 363.6 36.4	407.4 40.1	723.6 35	.7 213.3	19.6
1-NG-171675 1312.6 S	17 43.934 18 43.941	<u>69.700</u> <u>14.3</u> <u>5</u> <u>69.702</u> <u>3.7</u>	<u>.9</u> 8.2 9 10.9 9	5 53.5 12 8.4 69.8 14.5		0.8 5		- $$ $$ $$	- 295.2 81.8 R 110.1 113.4	608.2 330.7 ²	7904 269.	9 363.2 28.7	324.6 38.3	691 33 603.1 32	.1 179.7	15.6
2-NG-171677 1347.6 S	19 43.944	69.696 3.3	9 4.4	7.4 69.3 15.2		0.7 7.3	1 6.7	52.2 63.7	389.6 102.8	150.3 366.3 91	86.3 390.	6 <u>326</u> 36	328.2 38.1	609.7 34	.8 201.4	19.6
1-NG-171678 1190.7 S	20 43.948	69.696 7.1 7 69.694 8.5 11	1 0.5 4	5.2 78.8 13		7.3 6.6 4	4.9 5.7	75 90.6	5 105.5 57.5 463.7 91.6	671.6 274.5 94	45.3 30	4 346 30.9	342 34.2	667.3 34	.3 151.6	15.3
2-NG-171680 1421.5 S	21 43.947	69.694 3.5 11 69.694 36 13	.1 16.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.5 16.4	10.2 9.4	26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 370.3 112.6	130.6 434.7 96	44.8 385.	4 598 59 8 369.4 36.4	433.4 39.5	776.7 36	.7 179.3	19.8
2-NG-171681 1546.1 S	23 43.951	<u>69.693</u> 22.9 14	.8	51.1 13.9		0.8 10.2 3	3.7 8.8 3.7	9.7	273 76.9	447.6 567.6 124	60.2 414.	8 560.3 41.9	541.5 41.3	824.7 35	.7 185.1	$\frac{20}{10.4}$
2-RG-171085 1690 S 2-C4-171742 437.5 1	24 43.930 25 43.953	69.692 8 11 69.692 4.1 8	.2 9 0 .8 20.6 0	5.5 54.8 10.5 5.9 29.9 12.2	9 17.2	6 8.3			-224.2 90	97	81.7 400.	7 282.2 34.9	352.6 34.7	555.3 30	.5 151.2	19.4
2-C4-171743 494.6 2	25 43.953	69.692 1.6 10 69.692 0.5 11	.6 2.1 (5.8 31.7 11.6			0.9	0 6.3 106.1 65.9	0 185.1 64.4	222.5 310.5 119	78.1 424.	8 408.2 34.3	406.3 36.4	631.2 31	.9 170.8	17.8
2-C4-171744 349.1 5 2-C4-171745 493.4 4	25 43.953	69.692 9.3 11 69.692 12.6 10	.4	<u>39</u> 10.7		7.9 9 9	9.2 9.2 4.2 9.6 9.4 6.4	4 6.2	- 72.1 54.8	118	66.8 432.	4 447.1 40.8 1 450.6 37.2	449.9 37.8	545.1 2	.7 179.8 2 29 201.8	17.8
2-C4-171746 406.1 5	25 43.953	69.692 7.9 11 (0.602 2.5	.8 3.3	7.5 5.5 9		8 9	3.2 7.6 9.9	0 7.2 59.9 69.7	106.7 74.8	1355.1 511.8 106	83.2 458.	4 471.5 42.7	492.9 43.2	778 36	.8 222.9	20.7
2-C4-171747 412.3 0 2-C4-171748 435 7	25 43.955	69.692 2.3 6 69.692 15.7 12	.8 4.7	7.4 23.5 13.1		8.5 10.7 12	2.6 9.9		- 54.5 71.7	75.9 220.6 132	28.8 487.	4 431 43.1	500.4 40.9	724.2 36	.9 132.3	$\frac{14.3}{20.5}$
2-C4-171749 413.1 8	25 43.953 25 43.953	69.692	2.5	7.4	30 25.5	3.2 9.7	8.7	7 7.5 28 69.4	53.4 71.7	290.1 469 116	89.5 47	4 423.2 42.3	450.2 42.9	761.2 38	.1 248.8	21.3
2-C4-171750 415.5 9 2-C4-171751 582.1 10	25 43.955	69.692 13.1 12 69.692 3.8 9	.9 9.9	1.4 6.3			5.1 8.4 21 1.7 7.2 6.8	3 8		110	76.9 377.	6 323.6 32.1	363.9 31.8	607 2	.5 178.1 28 229.5	17.5
2-C4-171752 438.3 11	25 43.953	69.692 0.7 9	.9 1.6	8.2 27.1 12.8		13 10.5	4.9 7.8 3.9	0 6.8		661.2 490.3 138	33.1 490. 70.8 280	3 435.9 41.5	419.1 41.2	755.8 36	.5 226	21.5
2-C4-1/1/55 850.6 12 1-NG-171686 1681.4 S	<u> </u>	<u>69.692</u> <u>5.7</u> <u>5</u>	<u></u> 3.6 0	13.3 6 5.2 30.2 8.9		8.4 6.3 5.8 5.8 10	0.3 9.3 2.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275.6 92.4	412.5 291.7 108	70.8 289. 68.1 27.	7 325.4 24.4 4 373.1 27.1	447.8 30.5	732.5 31	.1 187.9	$\frac{11.5}{14.1}$
1-NG-171687 1547.6 S	26 43.939	69.693 0.2 T	.1 10.5	5.9 14.8 11.8		9.4 5.1 10	0.2 5.1 2.8	3 5.4 99 70.7	513.7 88.6	756.7 341.6 97	48.2 269.	4 422.7 29.6	486.5 33.1	801.4 32	.4 198.1	15.1
2-NG-171688 1445.4 S 2-NG-171689 1343 S	27 43.941 28 43.945	69.692 8.6 10 69.690 9.9 9	<u>.3 10.5</u> .5 0.7 (7.9 46.2 11.8 5.4 51.8 17.1		4	$\frac{18}{4.9}$ 7.6 10	- $$ $/1.7$ $61.30 6.7 123.9 109.4$	983.1 132.5	421 289.5 74	01.2 349.	7 <u>343.3</u> <u>35.7</u> 7 <u>191.5</u> <u>27</u>	418.3 37 207.2 36	497.5 32	.4 146.6	$\frac{17.7}{17.5}$
1-NG-171690 1412.1 S	29 43.948	69.689 21 8 (0.689 25.5 10	.4 3.4 4	4.5 60.9 11.7	99 22.9	7.4 4.9 1	7.2 9.4 9.1	5.4 17.4 63.9	0 650.8 98.4	543.2 323.4 69	19.1 241.	3 273.8 26.1	296.7 30.1	545.2 29	.1 169.8	13.4
2-NG-171691 1367.7 S 1-NG-171692 1382 S	<u> </u>	69.685	7.3	5.5 24.5 10.7	5.4 9.5	(0.8 5.1 8.4	4 7.5 112.2 63.8	<u>447.9</u> 107.3 3 562.6 95.3	265.7 231.9 62	76.5 231.	3 248.4 24.3	248.9 28.5	487.1 32	.8 122.8	18
1-NG-171693 1650.5 S	32 43.940	69.695 6.5 7	.3 7.3	5.4 30.7 9			1.7 4.2 3.8	3 3.7 36.6 79	0 114.2 63.3	132.7 245 86	78.4 246.	3 351.3 24.7	376.7 28.6	549.5 27	.8 153.5	12.6
1-NG-1/1694 1411.1 S 1-C3-171964 133.9 1	<u> </u>	69.694 7 6 69.693 4.9 11	.3 3.8 3	$\frac{5.2}{}$ $\frac{34.2}{7.2}$ $\frac{9.5}{10.5}$	85.1 21.4 16.6 24.9	4.4 5.6 10	$8.5 \ 11.7 \$	149.4 98.8	3 102.7 96.4 3 109.4 74.9	121	<u>38.8</u> <u>310.</u> 12.2 <u>517.</u>	7 463.6 30.8 6 388.9 42.9	<u>474.9</u> <u>33.9</u> <u>392.2</u> 49.3	706.3 33 590.6 46	.2 160.1	$\frac{15.1}{22.7}$
1-C3-171965 87.4 2	34 43.945	69.693 18.9 21	.3 20.9 10	5.2	11.3 26.5	11.2 14.5	1.5 15.4 9.6	5 15.5	4.7 123.4	1099.6 528.1 131	80.1 662.	3 322.3 58.2	516.2 69.9	521.8 61	.4 153.8	32.3
1-C3-1/1900 12/.4 3 1-C3-171967 103 4	<u> </u>	<u>69.693</u> <u>6.3</u> 14	0.6 14	+.0 2.3 10.9 2.8 11.8		21 18	1 10.7 5	<u>4 15.7 84.1 108.9</u> 5 11.7 115.6 168.3	3	130.2 416.3 118 683.2 542.1 115	04.0 502. 08.7 608.	+ <u>332.3</u> 47.4 2 391.3 62.7	378.5 59	879.1 59	.4 117.9 1	<u>25.9</u> 26
1-C3-171968 113.3 5	34 43.945	69.693 9.2 13 (0.692 0.2 13	.4	13.1 13.2			21 13.1 12.3	<u>3 10 294.3 132.1</u>	59.2 86.7	146.4 311.1 116	43.5 583.	9 258.2 56.4	428.5 60.7	752.3 55	.3 252.2	31.2
1-C3-171968 113.3 5 1-C3-171969 124.1 6	<u> </u>	69.693 9.2 13 69.693 2.1 14	.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.3 30.6	13.5 14.9	<u>21 13.1 12.3</u> 8 10.8 7.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 73.8 84.7	114	43.5 583. 85.7 538.	<u>9 258.2 56.4</u> 4 401.8 50.8	428.5 60.7 374.5 54.2	761.8 57	<u>.3</u> <u>252.2</u> . .7 <u>201</u> 2	26.5
1-C3-171970 106.1 7	34 43.945	69.693	7.3 14	4.2	41.8 34.9	(6.5 11.4 5.5	5 9.2	69 94.5	258.8 427.4 115	53.5 617.	4 386.4 55.7	344.1 64.9	737.2 67	.9 176.1	27
1-C3-171971 94.1 8 1-C3-171972 132.7 9	34 43.945	69.693 11.1 15 69.693 3.9 11	.3 1.5 1. .6 8.7 9	3.5 34.1 18.2 9.9 11.7 13.2	14.9 20.6	14.8 14.8 29 9.1 13.1	9.4 15 1.4	4 14 514.6 221 	- 138 92.4	1203.7 516.2 125 452.7 334.1 118	13.7 67 70.3 525.	4 292 58.3 8 465.9 47.1	<u>366.5</u> 50.8 427.7 54.6	820.1 63 641 48	<u>.9 191.5</u> .2 158.5	$\frac{35.3}{25.3}$
1-NG-171695 1882.1 S	34 43.945	69.693 0.5 4	.6	16.1 9.5		3.3 4.6		41.9 43.1	62.1 47.1	101	86.5 249.	3 387 26.4	427.2 28.8	554.1 26	.7 143.7	12.4
2-NG-171696 1586.7 S 2-NG-171697 1546.1 S	35 43.935 36 43.928	69.699 1.1 7 69.706 23.5 11	.9 0.6 0 .7 6.1 0	5.4 31.6 12.5 5.3 34 12.5		15.5 7.7 4 7.4 6.9 10	4.1 6.2 6.4 7.2 3.7	 7 5.7 47.8 98 3	- 71.4 67.1 3 125.7 77	342.2 530.4 102 81.9 299.1 90	35.4 376. 17.5 361	2 415.4 37.1 9 449.8 36.4	451.5 39.3 386.3 37.6	796.7 34 678.7 3	.6 163.1 38 176.8	18.8
2-C3-171982 147.3 1	38 43.572	69.413 15.9 17	.3 4.2	15 12.5 13.5	18.5 32.2		2	2 11.3 218.6 106.5	5 17.3 86.7	100	31.4 609.	7 290.1 58.6	273.4 46.1	504.1 45	.2 159	22.1
2-C3-171983 125.6 2 2-C3-171984 111.7 3	38 43.572 38 43.572	<u>69.413</u> <u>15.4</u> <u>20</u> <u>69.413</u> <u></u>	.9 9.9 19	9.4 1 4 40 5 20	113.8 55	27.7 20.5 13	3.9 18.3 4.7 0.7 15.3 20.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81.4 162.7	10 215.7 1193 116	0664 700. 49 7 742	8 <u>286</u> 60.3 8 <u>326</u> 7 71 7	286.9 68.3	642.2 59 821.6 64	.6 225.8 1 8 195.4	34.6
2-C3-171985 125.2 4	38 43.572	69.413		15.8 18	45.5 38.5	7.2 16 23	3.9 20.5 10.5	5 12 180 153.4		2013 1180.2 97	27.3 63	9 491 64.8	444.4 69.8	745.6 60	.6 228.5	33
2-C4-171986 105.2 5 2-C3-171987 109.9 6	38 43.572 38 43.572	69.413 14.3 28 69.413 45.2 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.8 29.8 21.1 7.5 33.5 19.8	171.5 90.9	24	4.7 23.3 46.3 5.8 15.9 2.7	<u>3 23.7 66 192.5</u> 7 14 4 124 5 125 9	5 240.9 214.7 3 25.8 130.2	173	32.9 1142.	5 400.1 102.4 6 231.6 65	443.8 91.5	1331.8 101 636.5 64	.8 378.6	57.8 36.2
2-C4-171988 104.6 7	<u>38 43.572</u> <u>38 4</u> 3.572	69.413 82.1 33	.6 14.6 24	4.4 24.8 31.3		6.2 13.3 2.3 6.2 42.7 20	0.7 27.7 30.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 152.4 174.3	1075.6 1247.1 185	85.7 1177.	7 590.3 104.4	402.6 87.5	1457.1 <u>1</u> 01	.4 330.9	42.8
1-NG-171699 1499.1 S	38 43.572	69.413 27.3	8 8.2	5.4 34.9 8.7		1.2 5.6	0.5	5 4	257.9 61.6	3.3 326.3 78	98.1 246.	1 305.6 26.4	395.7 29.5	534 28	.3 151.1	12.7

	nuclide	60Co	60Co	137Cs	65Zn	22Na	54Mn	58Co 133B	a	7Be	210Pb	40K	214Bi	214Pb	212Pt	20	8T1
	Gamma energy (keV)	1173.23	1332.5	1 661.62	1115.52	1274.54	834.81	810.75 383.7	7	477.56	46.52	1460.75	609.32	351.99	238.63	3 583	3.14
	Branching Ratio	0.9986	0.9998	0.8462	0.5075	0.9994	0.9998	0.9945 0.088	34	0.103	0.04	0.107	0.4609	0.371	0.431	0.8	861
sample mass(g) donth(in)	station lat	long nCi/kg	/nCi/ka	+/- pCi/kg +/	nCi/kg +/-	pCi/kg +/-	Ci/kg +/_ pC	Ci/kg +/- pCi/kg	1/-	nCi/kg +/- r	Ci/ka	nCi/ka +/-	pCi/kg +/-	nCi/ka	+/- nCi/kg	+/_ pCi/k	a +/-
sample mass(g) ueptn(m)	Station lat.	iong. pCi/kg	/- pCI/kg	т/- pсi/kg т/	· pci/kg +/-	рсі/кg +/-	JC1/Kg +/- pC			рсикg +/- р	JC1/Kg +/-	pc1/kg +/-	pC1/Kg +/-	pC1/Kg	+/- pci/kg	+/- pci/k	3 +/-
1-NG-171700 1438.5 S	39 43.934	69.728 10.7	5.8 10.3	6.1 57 11	1 11.1 12.1	2.9 4.5	10.4 7.2			136.5 90.5	618.3 301.4	7989.2 252.	5 361.5 26.2	2 355.4	30 598.1	29.3 19	2 13.6
2-NG-171701 1403.6 S	40 43.936	69.724		69.6 14	2	10.8 9.4	3.3 9.3	14.1 6.6		271.4 86.1	721.5 476.5	8133.9 365.	3 346.6 36	6 434.8	42.5 657.8	33.2 138.	1 17.4
1-NG-171702 1463.3 S	41 43.941	69.706 3	5.6 5.2	5.8 87.2 12	7 93.2 19.4		5.6 4			48.3 41.2	479.6 300.2	7799 248.	6 303.2 25.2	2 290 2	29.5 494	28 155.	3 13.3
2-NG-171703 1418.9 S	42 43.939	69.710 10.7 69.711 15.3	68 27	65.9 14 4.3 64.5 10	4 18 15		46 49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73.9	229.9 90.4	41.0 545.7 810 253	8318.3 35 7014 1 237	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 388.7. 4 256.4	27.9 478.3	27.5 124	$\frac{5}{4}$ 11.9
2-C3-171973 199.5 1	44 43.935	69.709	4.7	10.1 82.5 1	8	6.4 16	2.2 8.7			68.3 64.7	421.1 438.9	6881 431.	1 308.1 41.9	9 223.1	39.6 349.6	31.1 81.	.6 17.2
2-C3-171974 99.8 2	44 43.935	69.709	9.4	18.4 102.1 29	7 40.9 32.2	12 20.9	3 25.2	8.8 14.3 462.4	174.9	68.3 113.8	928.4 1096	9265.6 749.	9 283.9 76.2	2 403.5	65.8 739.8	68.8 180.	.4 31.7
2-C3-171975 134.1 3	44 43.935	69.709	13.1	12.5 88.6 25	1	10 18.6	14.9 14.5	1.1 11.6		194.7 122.5	635.7 544.1	8104.2 579.	2 281.1 60.4	4 316.1	62.5 606.1	55.9 169.	2 30.3
2-C3-171976 119.3 4 2 C3 171977 112.1 5	44 43.935	69.709 72.9 69.709 7.4	18 3.9	14.9 54.5 27	$\frac{1}{2}$ ${208}$ ${318}$	15 19.2	18.8 19.1	<u>18 18.4 20.2</u> <u>6 1 15 8 143 6</u>	118.6		<u>683.5</u> 762.3	9728.9 691.	7 38/.1 59	$\frac{9}{2}$ $\frac{473.8}{324.6}$	59.4 790.4 57.4 701.7	62.7 114. 64.6 234	7 36.2
2-C3-171977 112.1 5 2-C3-171978 117.7 6	44 43.935	69.709	2	12.7 15.6 15	8 19.8 41.6	23.8 16.2	17.8 13.8	14.9 19.4 266.7	173.8	130.2 146.8		9456.2 715.	6 281.5 54	4 238.1	50.2 789.5	61.2 204.	<u>8 33.2</u> .3 33.9
2-C3-171979 101.5 7	44 43.935	69.709 22.4	9.5 13.8	20.1			8.8 17.8	12 18.7 296	174.4	75.5 118.9	1058.9 1211.9	10284.5 739.	9 260.2 62.2	2 275 '	76.6 529.1	78 138.	.5 39.1
2-C3-171980 114.9 8	44 43.935	69.709 3.6 2	8.1 8.1	22.1	23.7 39.6	17.6 15.5	12.1 17.2	171.6	130.7		967.7 1402.3	10454.1 714.	9 252.9 57.5	5 82.4	69.7 680	61.9 163.	1 38.2
2-C3-171981 109.8 9	44 43.935	69.709 1.9 1 69.709 1.2	5.2 31.2	22.8 10.3 1	5 35.4 35		22.3 15	13.3 13.2 77	131.2	98.2 150.5	702.1 1102.2	9967.2 713.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 331.4	76.7 720.2	62.6 260. 22.5 150	5 35.6
2-NG-171708 1423.1 S	44 43.933	69.709 1.2 69.723	5.8	6.5 <u>94.1</u> 13	6		7.8 0.3	19 61 62	38.7 62	626.5 107.4	<u>47.4</u> 518.5 166.1 278	7241.3 340	<u>8 238.7 34.2</u> 9 283.5 32.8	+ 329.8 . 8 297.9 1	35.4 516.7	32.2 139.	<u>3 17.1</u> 8 17
1-NG-171713 1425.1 S	46 43.956	69.683 6.9	5.4 10.8	6.2 70.6 10	5 78.1 21.1	2.6 4.6	3.6 4	10.6 5.8 20.3	45.7	489.6 85.6	607 233.9	7494 247.	2 342.2 27.4	4 277.9	30.2 527.3	28.9 137.	.7 13.5
2-NG-171714 1362.1 S	47 43.959	69.682 2	8.4	53.4 12	3 1.2 14	3.5 7.1	10 6.4	62.5	59.6	430.8 120.2	532.8 532.7	7867.3 355.	1 316.3 34.1	1 363.6	34.2 451.8	32.5 11	4 15
2-NG-171715 1387.6 S	48 43.969	69.684 10.2	8.6 0.9	9.4 64 12	7			0.5 6.4 50.6	59.1	637.1 126.4	407.5 637.3	8180.4 362.	7 288.8 34.3	3 271.7	36.6 584.6	32.7 157.	5 17.2
2-NG-1/1/19 13/4.4 S	49 43.973	69.679	3/.1	12.4 67.3 14 5.3 35.5 9	5	3.5 7.2	9 6.9 65 57	3.2 5.7 70	55.8	469.1 126.5	<u>1326.3</u> 646.4 60.4 228.4	<u>8442.4</u> 370.	9 <u>332.9</u> <u>33.</u> 3 <u>198.6</u> <u>22.3</u>	1 2/6.7	36.2 564.1	33 15	$\frac{5}{3}$ 18.4
2-C4-171953 490.1 1 2-C4-171954 297.8 2	50 43.981	69.676	12.2	<u> </u>	5	5.5 9.4		9.7 11 70	73.1	38.4 81.1	250.5 467.6	9481.3 498.	5 235.3 36.8	8 214.7	44.2 530.5	37.6 118.	$\frac{3}{2}$ 14.1
2-C4-171955 339.3 3	50 43.981	69.676 7.1	0.8 22.1	10 67.5 13	7	4.5 10.5	4.5 7.6	1.2 7.4 3.4	66.8	115.7 82.4	551.4 527.9	9343.3 460.	8 262.7 41	1 201.9	35.9 516	34.5 13	1 20.8
2-C4-171956 310 4	50 43.981	69.676 13.6	1.3 15.4	10.7 117 19	9 55.8 30.4	3.2 17	3.5 8.6	31.4 12.9		83.1 67.5	710.1 313.9	10019.5 48	9 327.8 43.4	4 320.8	43 611.8	39 14	8 23.1
2-C4-171957 316.6 5	50 43.981	69.676	20.4	7.8 80.4 17	9 10.7 19	 55 9 10 2	10.2 9.7	15.8 13.7 12.2	87.7	3.9 67.6		9547.9 48	$\frac{4}{2}$ 309 42.8	8 258 4	41.3 565.4	37.3 144.	5 21.7
<u>2-C4-171958</u> <u>515.0</u> 0 <u>1-C4-171959</u> <u>276.3</u> 7	50 43.981	69.676 16.3	0.3	<u>92.4</u> 85 886 1	7	13 72	2.4 8.9 8.7 7.7	21 61	91.5		506 226.6	<u>9312.2</u> 480. 8903 361	$\frac{5}{1}$ $\frac{169}{2852}$ $\frac{55.2}{321}$	1 388	40.9 590.9	<u>37.6</u> 180	$\frac{3}{7}$ 21.3
2-C4-171960 296.2 8	50 43.981	69.676 17.6	13	96.7 19	8	15.4 9.6		14.3 7.7		45.5 72.5	330.3 548.6	10322.5 50	8 278.7 48.4	4 400.9	47.2 738.6	43.7 187.	.6 22.6
1-C4-171961 360.3 9	50 43.981	69.676 9.6	6.6 9.5	5.6 86.9 13	3 44.6 15.6	10.2 6.6	6.4 8	3.7 8.7 9.4	84.5		520.2 408	8588.4 315.	7 242.1 28.8	8 348.9	31.7 543.2	31.9 145.	.8 15.5
2-C4-171962 333.2 10	50 43.981	69.676 10.8	0.8 7.1	8.2 36.8 23	1 2.3 16.5	15.7 10.3	5.2 9.8	13.9	75.3	36.8 86.2	205.5 309	11003.2 487.	5 488.2 47.3	3 434.8	45.6 703	41 204.	9 22.6
2-C4-1/1963 252.6 11 2 NG 171720 1400.6 S	50 43.981	69.676 7.2 69.676 12.2 1	14 /	10.8 137.3 29 6.7 60.4 14	3 42.4 25	0.5 7	6.8 10.6	3.4 10.1 36.7	91.7		320.4 580.5	11925.8 598. 8536.4 367	/ 403./ 56. 9 211.2 33.0	1 497.2	36 530.8	<u>49.1</u> 246.	4 29.7
2-NG-171721 1490.4 S	51 43.918	69.716 17.3	9.5	28.6 12	2		10.1 6.9	6 6.8 23.2	125.8	252.6 87.9	194.4 425.5	10240.6 388.	4 366 36.6	5 409	37 624.5	33.9 179.	.1 18.5
2-NG-171725 1312.6 S	52 43.915	69.709		83.2 13	5 14.4 14.5		4 7.7	7.1 7.2		382.4 95.4	424.3 541.4	7910.6 370.	7 296.5 38.3	3 281.6	38.2 567.5	33.6 153.	.9 18.4
2-NG-171726 1347.3 S	53 43.921	69.718 5.5	11 8.8	6.7 71.2 13	4 17.3 15.2	1.4 7.7				160.5 62.1		7108.2 348.	6 182.9 37.2	2 269.5	34.3 461.9	31.6 111.	1 16.5
2-NG-171727 1585.9 S	54 43.921	69.724 14.5 60.606 4.3	1.9 2.5	6.4 43.5 12 8.7 81.8 1	8		5.5 7.3	2.8 6 119.7	70.9	38.9 83.5		8810.3 348.	9 404.8 35.8	8 440.9 . 202.4	35.7 575.9	30.1 187.	8 17.2
2-NG-171728 1230.1 S	56 43.949	69.699 1.7	9.7 17.6	7.1 127.3 17	3 10.7 17	6.7 6.3	8.3 9.2	5.1 6.7 36.8	57.1	142.3 80.0	40 333.8	$\frac{11202.9}{6182.4}$ 31	4 237.6 27.2	2 219.8	32.7 476.2	30.7 125.	$\frac{3}{21.0}$
2-NG-171730 1387 S	57 43.950	69.698	4.3	9.1 116.5 1	7 4.8 14.5		1.4 6.5	5.5 6.9		131.7 115.2		9586.7 390.	9 370.1 37	7 401.8	36.3 571.9	34.3 129.	.8 18.5
																	_
Sample collected 2-5 August 2004 (pa	hse 2):	60 718 25 7 2	21 27	14 112 2 26	0 784 215	46.2 12.8	15 1 12 7	220.0	175	155 2 101 4	211.1 260	7094 9 552	7 195 4 54 9	0 010 0	52 1 550 1	64.1 100	2 22 2
1-C3-179285 78.6 1 1-C3-179286 111.7 2	59 43.921	69.718 23.7 2	2.6	10.7 74.2 18	<u>6 99.3 28.4</u>	40.2 12.8	2.7 9.1	7 9.8		5 5 81.2	507 421.6	7760.6 487	7 183.4 34.6 6 2314 55.5	5 210.0	52.8 493.8	50.1 177	2 32.2
1-C3-179287 133.1 3	59 43.921	69.718	12.5	9.7 26.2 13	6 40.8 22.6	10.5 16.6	2.2 8.8	0.7 7.3 13.4	87.3		17.2 323.1	8326.9 45	5 357.2 47.9	9 364.8	50.5 661	46.4 18	7 26.7
1-C3-179288 116.6 4	59 43.921	69.718 15.3	16			4.8 8.5	5.9 9.7	9.2 13.4 10.2	110.8	188.4 141.2	559.3 530.3	8588.4 496.	1 289.4 53	3 338.7	43.1 780.1	53.7 216.	.4 29
1-C3-179289 127.5 5	59 43.921	69.718	24.9	9.9 10.6 10	9 9 19.2	6.6 13.7	6.2 9	3.8 9.9 56	87.9		417.3 332	9479.7 487.	6 323.3 39.1 2 200.7 47.6	1 349.7 :	54.2 826.8	51.5 177.	7 24
$1-C_3-179290$ 140.6 6 $1-C_3-179291$ 121.5 7	59 43.921	69./18 69.718 32.2 1		<u></u> <u>2.8</u> 9	<u>3 1/8.3 3/.5</u> 7	1 10	/ 10.6	0.8 83 947	173	2.2 108.1	249.5 297.4	<u>9041.3</u> 454. 10247 1 512	2 309.7 47.8 4 295.5 50.5	8 358.5 3 5 401.8 4	56.3 760.3	<u>48.3</u> <u>23</u> <u>53</u> 205	$\frac{2}{5}$ $\frac{25.3}{24.7}$
1-C3-179292 108.4 8	59 43.921	69.718 32.2 1 69.718 24.9 1	5.5		120.1 39.1	11.6 11.6	11.9 12	4.5 9.6 71.4	110		744.1 427.5	10720.7 577.	<u>4 275.5 50.5</u> 6 430.9 59.5	5 395.4	59.6 875.9	58.7 231.	.2 32.3
1-C3-179247 163.4 1	60 43.918	69.716 12	9.9 14.1	10.9 1.2 8	4	9.4 8.4	9.2 7.7	7.3 9.4 53.4	124.2	44.8 67.2	309.8 178.8	7343.6 392.	3 222.3 35.6	5 239.7	43.6 637.5	40.4 180.	.3 20.7
1-C3-179248 124.7 2	60 43.918	69.716 7.9	6.6 23.2	10.9 1 11	3 15.8 26.2	12.3 11	5.6 8.9	248.3	174.5	29.4 124.2		7715.6 447.	1 314.6 48.3	3 309.8	53.7 590.2	47 14	8 25
1-C3-1/9249 120.4 3	60 43.918 60 43.918	69.716 2.2 69.716 9.3	0.2		<u>28.7</u> <u>25.9</u>			15.1 11.5	87.5	219.6 153.8	5/2.6 438.8	8564.9 476.	1 3/1.4 44.4 7 283 41 2	$\frac{4}{2}$ 345 3	52.8 724.9	50.4 184	$\frac{5}{7}$ 27.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 43.918	69.716 9.5 69.716 8.6	3.7	- 4.3 14	6	20.5 16.4	23.5 13	18.2 12.1		121.2 169.9	587.2 477.3	9255 591.	5 359.6 65.2	2 473.1 [′]	70.9 691.8	63.2 17	9 32
1-C3-179252 121.2 6	60 43.918	69.716	9.9	13.7 11.2 12	7		8.2 10.6	7.7 13.2 24.6	88.6	5 103.6	986.5 469.5	9456.5 502.	9 321.8 48.3	3 405	56.2 727.2	52.7 205.	.3 28
1-C3-179253 119.7 7	60 43.918	69.716	1.2	10.5 4.9 11	5 93.1 32.7	25.3 22	7.9 12.9	149.2	120.6	35.7 84.5	129 262.2	11373.3 546.	4 366.1 47	7 382.4	58.1 785.6	54.2 27	6 32.1
1-C3-179254 116.9 8	60 43.918	69.716 19 1 60.716	8.4 29.6	14 14.9 11	5 25.3 27.3	27.8 16.1	15.2 12.1	8.9 12.5 34	119.6	5.2 74.4	553 373.9	11197.8 578.	3 255.9 50.4	4 408.5	58 844.2	56 236.	4 29.7
1-C3-179256 116 3 10	60 43.918 60 43.918	69.716	2.5	9.9 19.2 14	-254402	14 15.4	10.2 10.6	92.1	97.9	81.3 93.8	<u>203.3</u> <u>249.4</u> 510.6 <u>401.3</u>	10942.9 555	<u>z 344.9 48.3</u> 8 417.3 43.2	2 347.5	45.7 878.6	57.1 16	<u>0 23.3</u> 6 29.3
1-C3-179257 112.6 11	60 43.918	69.716 4.6	1.5 2.6	9.2			10.5 16.3	121.6	102.9		1295.6 582.2	10462.9 557.	1 428.1 53.7	7 344.2	50.4 798.3	56.6 245.	.4 29.9
1-C3-179258 128.1 1	61 43.928	69.706 17.8	1.8 10.1	9.8	4.8 25.7	27.6 15.1	1.5 9	111.5	119.8	258.8 137		8595.1 485.	6 346.4 48.9	9 310.9	52.6 815.2	48.9 172.	.9 26
1-C3-179259 128.4 2	61 43.928	69.706		9.8 9	7 7.7 18.6	22.5 13.9	18.5 10.2	0.8 9.5 9.3	86.3		280.7 353.9	9288.7 505.	4 265.4 38.9	9 406 3	55.1 780.3	51.8 200.	5 26.7
1-C3-179260 125.5 3 1-C3-179261 112.5 4	61 43.928	<u>69.706</u> 9.7	5.1 4.6 4.1 30.9	12.5 10.8 1 14.6 13.4 12	/	8.9 9.7	18.9 10.4	<u></u> <u></u> <u>/5.9</u> 5.2 8.7 <u>/7.6</u>	84.9 94 s		555.2 436.4	8912.2 482. 9851.6 504	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	358.4 3 8 306 3	569 7/3.8	51.9 196. 54.8 241	3 23.6
1 CJ 17201 112.J 4	01 +3.920	07.100 21.1	37.0	10 10.4 10		15.0 12.0	2.0 10.2	5.2 0.7 47.0	/T.O	15.0 145.5		2021.0 204.	, 207.7 43.0	5,0.5	173.0	241.	1 20.1

		nuclide			60	Co	60Co	137Cs	65Zn	22Na		54Mn	58Co)	133B	Ba	7Be	210Pb	40	K	214Bi	21	4Pb	212P	b	208T	ľ
	ļ	Gamma energy (keV)			117.	3.23	1332.51	661.62	1115.52	1274.54	4	834.81	810.7	5	383.	7	477.56	46.52	146	0.75	609.32	35	1.99	238.6	3	583.1	4
		Branching Ratio			0.99	986	0.9998	0.8462	0.5075	0.9994	ŀ	0.9998	0.994	5	0.088	34	0.103	0.04	0.1	07	0.4609	0.	371	0.43	<u> </u>	0.861	1
sample mass(g)) depth(in)	station	lat.	long.	pCi/kg	+/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg	+/-	pCi/kg +/-	pCi/kg	+/- p	Ci/kg	+/-	pCi/kg +/-	pCi/kg +/-	pCi/kg	+/-	pCi/kg -	-/- pCi/k	g +/-	pCi/kg	+/- p	Ci/kg	+/-
							• •			• Ŭ				<u> </u>	Ŭ							<u> </u>	0				
1-C3-179262 119.6	5 5	61	43.928	69.706	12	11.1	19.3 10.8	10.2 13		5.8	10.8						187.1 108.4		8914.1	513.2	350.2	47.7 35	4 51.1	664	50.6	186	24.9
1-C3-1/92// 106.1	$\frac{1}{2}$	62	43.934	69.700 69.700	3.7	11.5	16.3 15.4	23.7 12.8	12.4 28.7	18.4	10.5	28 12	13.4	13.7	190.8	149.3	24.6 71.5	<u>388.2</u> 280 346.3 21	5 5264.1 1 7272 3	448	253.8 4	$\frac{11.7}{213}$.2 55 9 47 6	5 598.1	48.5	108.7	22.9
1-C3-179279 109.1	1 3	62	43.934	69.700	7.2	13.5		11.2 14.2	27.1 25.8	18.8	14.5		9.8	9.5			39.2 87.6	23.6 244	8 7785.6	494.9	227.9	41.2 276	.5 51.4	4 694.4	53.4	162.8	29
1-C3-179280 120.8	8 4	62	43.934	69.700			12 8.6	7.6 10.8					11.3	9.2	19.7	120.2	80.8 76.6	135 206	5 7428.9	440.6	203.6	44.4 262	.8 46.3	3 577.3	42.9	161.3	22.1
1-C3-179281 126.3	3 5	62	43.934	69.700	3.4	12		5.1 10.2					16.9	14	58.1	120.6		47.6 323	6 9316.4	482.2	215.8	42 199	.7 46.5	5 592.6	46.6	148.4	22.5
1-C3-179282 108.7 1-C3-179283 121.6	/ 6 5 7	62	43.934	69.700 69.700			9.5 16.7	1.8 10.4	53.5 27.9	23			4.5	9.8	323.2	168.2	183.4 108.9 80.3 83.7	31.6 243	3 8563.6 - 8360.8	511.3	191.6 319.8	37.6 358 16.5 276	.6 52.8 3 49.6	669.5 625.1	53.8	197.7	28.8
1-C3-179284 107.6	5 8	62	43.934	69.700	20.9	15.4		19.8 18.3	20.6 26.6			11 10.6	1.8	8.7	110.7	156.5			9137.7	523.9	236.9	48.6 178	.3 49.1	686.4	52.9	221.7	23.2
1-C3-179263 104.9	9 1	63	43.940	69.695	18	12.3		44.3 19.2	36 25.7	22.6	10.8	5.7 10.6			136.2	94.3	159 101.4	389.4 298	1 5157.9	414.6	192.3	41.5 208	.5 45.8	3 514.8	46.4	85.6	24.6
1-C3-179264 180.6	5 2	63	43.940	69.695	15.9	9.3	0.8 7.3	38.9 11.3	13.7 15.2	10.8	9.9	2.4 9	9.7	7.1			13.5 54.5	465.6 264	6 6338.1	347.9	172.4	33 225	.1 35.2	2 503.2	34.2	119.3	19.3
1-C3-179265 106.6	$\frac{5}{9}$ $\frac{3}{4}$	63	43.940	69.695	20.8	9.6		<u>56.3</u> 24.4 115.9 22.9	85 5 35 2			9.3 10.5	6.4 9.2	9.2	52.1 18.8	140.2 88 5	1/1./ 92 81.8 72.8	<u>424</u> 312 635.6 268	8 8677.7 3 7564.6	525.3	261.9	15.4 298	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 628.1	<u>54.5</u> 45.5	153	$\frac{27.4}{23.3}$
1-C3-179267 138.4	4 5	63	43.940	69.695	4.7	10.6		24.2 12.9		8.7	12.6		0.7	8.6	126.2	93	149.9 104.6	59.9 310	4 7976.5	446.2	335.1	47.5 376	.2 44.5	5 686.7	46.5	197.2	23.4
1-C3-179350 128.4	4 1	64	43.942	69.694	2	10.5	10.1 10.1	52.8 17.1	10.2 23.7			5.4 9.6	3.3	9.4	207.1	124.8	23.8 68	80.2 355	7 9198	485.1	248.5	47 286	.4 46.2	2 440	46.1	148.4	20
<u>1-C3-179351</u> 120.1	$\frac{1}{2}$ 2	64	43.942	69.694	3.3	11.8	31.3 12.9	79 17	28.7 34.1			0.8 10.3	0.8	13.5	39.7	83.8		423 373	1 9724.7	522.4	279.6	39.2 29	03 44.2	2 545.1	48.2	160.1	23.9
1-C3-179353 103.7	7 4	64	43.942	69.694	9.2	14.0	4.9 17.2	30.5 16.1		2.9		13.7 11.1	12.2	9.4	80.4	128.1	179.5 94	248.3 25	4 7587.9	432.7	249	+7.7 170 45.8 236	4 54.7	7 598.4	55.4	169.8	23
1-C3-179354 118.6	5 5	64	43.942	69.694	6.6	10.8	2.4 8.8	80 19	5.5 18.4	8.2	9.5	10.8 12.6			100.4	94.2			7578.9	461.5	381.2	46.4 254	.7 43.8	609.4	48.1	154.9	19.1
1-C3-179355 90.8	8 6	64	43.942	69.694				46.2 24.6	67 39.2	6.9	13.5	21.1 13.5	8.6	11.3				459.9 400	5 8153.4	525.6	265.4	55.1 246	.2 61.2	2 718.7	61.9	103.3	22.6
1-C3-179356 101.1	l 7	64	43.942	69.694	5.2	13.2	5.7 11.2	11.5 12.6				8.8 18.6	19.8	12.9	55	119.9	48.3 90.7	198 292	7 7006.2	491.9	171 4	10.3 249	.9 46.6	5 579.3	59.3	146	27.6
1-C3-179358 132.5	5 9	64	43.942	69.694	7.5		2.2 8.7	12.2 12.5	20.3 30.4	23.2	11.3	13.4 9.1	1.7	10.2	38.9	97.9	23 73		- 9045.2	493.8	336.2	42.4 317	.4 51.6	505.6	51	145.7	22.6
1-C3-179359 125.1	1 10	64	43.942	69.694	1	10.5	6.9 9.4		13.8 17.3	4.5	9.2		10.9	9	19	89	4.9 74.5		11045.1	506.8	323.3	43.1 407	.7 54.7	7 561.8	48.4	120.3	22.1
1-C3-179268 111.5	5 1	65	43.911	69.729	10.5	15.8		74.6 20.6		12.5	9.9		2.2	10.2	165.5	138.2	35.6 90	415.6 319	3 6444	433.6	196.8	33.9 256	.3 53.3	3 518.6	48.2	145.5	25.3
1-C3-179269 103.5 1 C3 179270 105.5	5 2	65	43.911	69.729			4.9 9.2	58.3 17.9	76.2 33 82.6 36.3	27	15.4	9.6 8.8	1.9	11			76.6 91.2	1376.3 488 600.5 300	3 7405.9	484.6	208.8	53.3 278	.7 59.8	3 633.3 1 554.3	50.9	191.3	25.2
1-C3-179270 103.3	3 4	65	43.911	69.729	11.1	15.1	3.1 18.9	109.8 28.1	5.3 21.9	16.5	13.3	14.2 14.9	5.6	13.5			150.9 160.9		- 6459.1	499.7	180.5	46.4 14	0 51.2	2 572.6	56.3	162.4	30.2
1-C3-179272 119.5	5 5	65	43.911	69.729			10.9 13.8	37.8 15.2		4.7	10.8	3 13.3					37.4 94.7	1508 52	0 9298.9	498.6	312.5	46.1 294	.5 44.7	7 774.4	51.3	172.4	25.8
1-C3-179273 115.2	2 6	65	43.911	69.729	11.3	12.5	5 10.8	1.1 13.7		13.7	15.2	8.9 13.5			398	200.3	63.6 94.5	521.4 302	3 10555	538.9	373.7	53.5 39	5 58.4	4 808.7	60.6	273.4	28.8
1-C3-179274 130.4	1 7 1 9	65	43.911	69.729	21	11.6	11.1 9.1		64.3 22.8	16.4	12.3	13.7 12.8	12.2	12	4.6	83.6	49.9 90.3	1026.6 283	7 9698.3	484.3	372.2	19.6 299	3 52.5	5 712.9	56.6	205.7	23.8
1-C3-179276 124.8	8 9	65	43.911	69.729	9.4	10.7	17 11.6		15.8 25.5				22.3	9.8			107.6 118.6	130.6 230	8 8985.5	485.7	221.1	403	.7 55.5	9 796.1	51.8	187.7	26.3
1-C3-179325 118	8 1	66-1	43.898	69.754	8.1	13.9	9.2 10.4	3.3 10.9	14.6 26	49.7	10.8	16.2 11.7			280	188.8		705.4 337	6 7481.9	457.7	359.2	44.8 304	.6 48.7	815.2	51.9	182.8	25.8
1-C3-179326 116.4	4 2	66-1	43.898	69.754	20.2	11.9	1.2 8.5	25.6 13.3				5.7 12.1	1.7	9.5	56.3	101.1	24.5 104.9	29.5 41	7 9071.7	509.4	312.7	55.9 376	.2 58.3	8 852.1	55.1	220.2	26.6
1-C3-179327 120.6	5 3	66-1	43.898	69.754 69.754	28.6	14.3	22.2 9.5	61.8 21.7		24.1	11.6	8.2 9.7	4.8	12.3	24.7	104.1	30.4 90.3	<u> </u>	4 8514.6 8 8345.1	485.7	330.1	52.4 378	.5 55.0 A 57.6	5 810.4	52.7	160.8	21.2
1-C3-179329 111.5	5 5	66-1	43.898	69.754			2.6 14.9	98.9 24	3.3 24.6	13.8	10.7	6.5 12.9	8.7	9.4	101.5	104.1	93 91.1	7.7 242	8 7135.4	468.3	254.9	48.1 307	.3 59.1	726.4	53.1	188.8	26.8
1-C3-179330 112.1	1 6	66-1	43.898	69.754	14	12.8	11.6 9.7	69.1 17.6	96.8 39.3	2.5	12.9	10.6 10.6	0.9	8.2			21.8 83.6	160.8 530	2 7810.8	472.1	315.3	50.5 370	.1 52.7	7 598.8	52	155.2	25
1-C3-179331 115.2	2 7	66-1	43.898	69.754	18.1	14.3	1 8.3	58 23.6	13.9 25.7			12.7 11.1	0.8	13.1				34.8 421	7 6277.5	447.5	300.1 4	44.8 359	.8 49.7	7 628.1	50	164.6	27.4
1-C3-179332 115.9	9 8 7 9	66-1	43.898	69.754 69.754	0.4	15.5	12.5 11.1	90.2 19.6	18.4 21.4 116.5 47.8	34.8 1	 16 1	5 2 15 4	6.7	9.5	51.4 132.8	93.6	<u> </u>	<u>148.1</u> 379. 694.5 596	8 6789.2 2 8207.6	448.5	247.1	44 270	$\frac{.5}{2}$ $\frac{53.4}{66.2}$	2 380.6	65.8	123.9	37.9
1-C3-179468 152	2 1	67	43.987	69.665	6.9	13.7	10.5 8.4	6.2 13.6	95.7 38.8			16.9 8.7	4.5	8	101.8	77.8	32.1 70	271 295	3 12142.9	503	406.8	46.7 445	.6 44.1	490.8	42.3	116.3	22
1-C3-179469 141.6	5 2	67	43.987	69.665	1.2	11.6	5.4 10.2	20.5 16.3	163.7 41.3	16.8	9.4		8.2	10.1			55.2 74.4	597.9 412	2 11601.9	503.8	284.8	41.6 296	.2 47.4	4 487.5	42.3	147.7	19.6
1-C3-179470 109.1	1 3	67	43.987	69.665	37.1	17.7	1.3 9.8	106.9 22.5				13.6 10.8			247.4	169.1		440.5 378	2 7585.6	486.7	234.6	49.6 173	.8 44.4	4 531.5	51.3	171.5	22.2
1-C3-179472 107.5	1 5	67	43.987	69.665	27.9	14.5		54.4 18.9	82.9 35.5	17.6	11.4	3.8 12.7	3.8	9.9				1181.9 551	3 7914.2	517.8	251.5	19.5 243	2 47 3	658.3	54.6	165.9	20.1
1-C3-179473 105.3	3 6	67	43.987	69.665	25.6	15.9		25.7 20.5	42.1 27.5	6	9.9		12.9	13.9	45.2	91.5	3.9 95.7	867.9 372	7 8204.7	499	134.7	42.8 255	.9 46.8	3 532.5	51.4	153.2	24.7
1-C3-179474 102.8	3 7	67	43.987	69.665				40.9 15.5	28.8 39.6			22.1 13.7	8.5	10.7	2.9	96.8		428.5 366	1 7965.6	502.4	165.5	36.3 247	.1 46.8	3 571.3	52.9	105.2	23.6
1-C3-179475 99.1		67	43.987	69.665	11.4	14.9		11.7 12.9	39.8 28.1	3.5	12	2 9.7			200.3	117.5	73.9 95.4	92.4 296	5 7514.5	509.3	288.5	48.8 96	.1 38.7	7 618.6	55.1	125	$\frac{25.8}{20.4}$
2-C4-179376 424.9	$\frac{3}{9}$	68	43.987	69.697	36.2	12.4	28 14.8	68.9 14.6		9.2	14.0	5.6 7.4	13.4	9.1			264.1 82.9	205.5 352	1 8203.5	399	211.7	+3.9 193 24.3 284	2 35.5	5 460.3	33.8	121.8	15.5
2-C4-179377 240.7	7 2	68	43.944	69.697	8.8	13.7		76.5 20.6	29.7 34.5	33.2	17.8				48.1	104.6		22.9 46	3 8914.9	539.5	258.8	55.3 284	.6 42	2 620.7	46.1	145.5	25.1
2-C4-179378 332.2	2 3	68	43.944	69.697			4.8 9.9	85.4 19.9		3.3	9.6				82.5	105.8	190.7 88.4	257.7 492	6 8995.2	462.5	360.2	42.6 30	4 42.4	4 459.7	36.6	115.6	22.6
2-C4-179379 188.4 2-C4-179380 209.1	4 4 1 5	68	43.944	69.697	3.2	19.4	12.6 15.8	65.9 20.8	149.6 55.8	17.3	15.5	20.7 15.5	20.2	12.9	178.2	119.6	224.6 121.3	1849.9 816 545.8 394	1 12916.9	725.3	460.3	353.2 355	.5 55.3	5 769.9 684.8	59.9	183.6	36.9
2-C4-179381 262.4	4 6	68	43.944	69.697	23.3	18.7	9.1 11.8	255 31.8	4.3 28.7	6.2	13.7	4.1 9.9	3.2	10.7	92.6	93.3		504	12913.8	605.6	354.3	51.5 441	.9 52.9	643.8	46	179.6	25.4
2-C4-179382 232	2 7	68	43.944	69.697	2.6	13	11.7 15.5	91.1 24.5	13.8 46.9			16.8 18.6			194.6	143.7	17.6 109.5	806.5 451	4 11430.8	620.6	340.9	50.5 410	.1 58.8	623.3	51.1	178.4	27.9
2-C4-179383 487.3	3 8	68	43.944	69.697	19.2	15.6	13 9.8	109.6 16.6		0.9	5.5	7.5 6.4	16.2	7.6	2.4	53.6	75.5 75.5		- 8814.1	365.7	219.2	31.8 310	.3 32.5	5 526.6	29.6	126.2	17.8
2-C4-1/9384 432.9 2-NG-179001 1377 3	y 9 3 S	68 68	43.944	69.697 69.697	4.9 73 /	12.6	0.8 7.9	80.1 15.8		9	/.6			8.9			151.4 95.6	275 7 301	- <u>9201</u> 1 8219.7	397.4	299.1	35 323	.5 35.2	5 576.6	33.5	1/8.3	18.8
1-NG-179003 1373.4	4 S	70	43.947	69.700	26.8	10.5	32.2 8.7	69.8 10.8	75.2 19.8	3	4.9	4.6 5.3	3.4	4.2	88	75.1	232.6 74.4	718.9 294	4 7593	250.5	286	26.7 387	.3 30) 526.9	29.4	132.2	13.6
1-NG-179004 1398	3 S	71	43.947	69.700	15.6	10.1	13.1 6.6	96.9 12.6	10.7 13	3.7	4.8	7.9 5.3	2.5	4.3			245.3 98.7	342.4 263	3 7876.4	254.7	279	26.4 309	.5 30.2	2 553.2	29.3	126.3	13.4
1-NG-179005 1399.9	9 S	72	43.949	69.698	21.4	9.8	28.4 7.3	111.5 13.3		4.8	4.8	6.3 6	6.2	5.4			160.8 62.7	741.3 259	1 7346.2	243.7	252.1	25.5 314	.1 29.6	5 549.4	28.5	144.5	13

	nuclide	60Co	60C	o 137Cs	65Zn	22Na 5	4Mn 58	Co 133Ba	7Be	210Pb	40K	214Bi	214Pb	212Pb	208	ГІ
	Gamma energy (keV)	1173.23	1332.	51 661.62	1115.52	1274.54 8	34.81 810	0.75 383.7	477.56	46.52	1460.75	609.32	351.99	238.63	583.	14
	Branching Ratio	0.9986	0.999	0.8462	0.5075	0.9994 0	9998 0.9	0.0884	0.103	0.04	0.107	0.4609	0.371	0.431	0.86	1
sample mass(g) depth(in)	station lat.	long, nCi/kg	-/- nCi/kg	+/- nCi/kg +/-	nCi/kg +/-	nCi/kg +/- nCi/	kg +/- nCi/kg	g +/- nCi/kg +/-	nCi/kg +/-	nCi/kg +/- n(Ci/kg +/-	nCi/kg +/-	nCi/kg +/-	- nCi/kg +/	- nCi/kg	+/-
		long, pering	, poing	iii poing ii	poing ii	pering it peri		g ii poing ii	poing !!	poing p	, 	pering ii	poing !!	pering !!	poing	
1-C4-179422 457.6 1	73 43.949	69.699 7.2	5.5 26.6	7.7 47.1 1)	:	5.7 4.8 3.	.7 4.5 70.9 57.	4 104.7 59.4	873 257.7 6	082.5 232.	3 258.8 22.4	223.9 24.	.1 350.2 26	5.3 127	12
1-C4-179423 363.8 2	73 43.949	69.699 15.2	7.9 29.1	9.1 79.3 14.	5 21.6 21.2	8.1 6	.7 7.6	4 4.6 9.3 50.	1 47 41.8	394.2 326.3 7	509.5 295.	9 239.8 28.7	245.8 30.	.9 478.2 30	0.5 129.7	15.5
1-C4-179424 342.1 3 1-C4-179425 426.6 4	73 43.949	69.699 69.699 17.2	4.4	5.7 59.9 I 4.9 79.2 12	5	4.3 6				<u>565.9</u> 407.5 8 569 259.4 7	347.4 324. 411.9 262	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	278.5 33.	$\frac{.4}{6}$ $\frac{521}{4813}$ $\frac{31}{26}$	1.8 151.5 5.4 141.5	13.1
1-C4-179426 351.2 5	73 43.949	69.699 1.5	6.7 2.2	8.9 113.6 14.	3 3.7 12.6	9	0.5 5.5	2.4 5	1	857.4 348.3 8	060.6 305.	4 284.5 32.3	362.8 33.	.1 516.1 30	0.2 113.7	15.8
1-C4-179427 335.2 6	73 43.949	69.699 11.9	7.1 1.7	5.5 93.6 15.	7	3.3 5.7	5.6 6.4 .		- 30.6 59.5	1049.6 432.5 7	843.8 315.	7 308.9 31.3	278 33.	.3 495.1	33 140.7	15.6
1-C4-179428 343.3 7	73 43.949	69.699 6	7.3 6.1	6.1 93.7 14.	9 9.6 12	'	7.8 7.3 0.	4 5 103.5 71.	5 19.9 58.1		7836 306.	7 208.6 29.5	268.2 32.	.9 576.2 33	3.4 162.6	15.6
1-C4-179429 335.4 8 1-C4-179430 315.3 9	73 43.949	69.699 7.7 69.699 1.8	7.0 17.0	11 123.3 17. 66 153.5 17	1	0.0 0.1 17.8 8.1	0.8 5.3 7.	$\frac{.9}{6}$ $\frac{5.1}{56}$ ${10.7}$ $\frac{.}{60}$		616.1 407.4 8 687.1 377.4 9	905.5 <u>331</u> . 047.8 <u>344</u>	2 239.5 30.5 6 279.6 32.3	255.3 34.	.3 694.7 31 87 716.4 35	1.2 195.3 5.4 194.9	16./
1-C4-179431 388.9 10	73 43.949	69.699	1	4.9 124.1 15.	7 5.1 13.5	7.6 5.5	5.9 5.3 0.	9 5.2 28.3 48.	2 92.4 45.7	409.6 326.5 8	184.3 293.	6 230.8 27.5	273.2 31.	.2 607.7 31	1.1 185.8	15.4
1-C4-179432 355.5 11	73 43.949	69.699 10.7	8.2	170.6 18.	3		2.	.6 5.6 176.9 98.	6 1.6 57.2	289.6 333.9 8	937.1 324.	2 271.2 28.5	252.6 32.	.8 623.8 33	3.7 179.2	16.6
2-NG-179009 1423 S	73 43.949	69.699 19.5	10.5 45.8	11.2 100.1 16.	5 90.1 24.2	13.6 10.1	.8 6.6	72.8 60.	5 301.1 106	118.6 383.6 8	359.5 363.	3 309.5 34.7	376.2 40.	.2 537.1 32	2.8 147.8	17.3
2-C4-179433 602.6 1 2-C4-179434 377.9 2	74 43.950	69.698 20.5 69.698 4.8	9.2	6.1 $6/.5$ $10.$	<u> </u>	2.7 6	2.	1 4.5 30.7 50.	3	6	719.2 288. 099.9 435	6 230.2 25.5 5 309.9 32.7	203.4 25.	<u>.9 3/8.6 22</u> <u>4 493.5</u>	2.6 99.4	13.1
2-C4-179435 311.1 3	74 43.950	69.698 8.7	1.7 4.4	13.6 183.8 21.	5 7.9 29.9		2.	4 9.4 141.4 82.	4 138 109.2	1043.6 569.4 10	240.4 502.	4 433.7 47.9	386.6 46.	.5 661.8 40	0.9 156.6	23.4
2-C4-179436 310.2 4	74 43.950	69.698 2.9	10.2 11	11 201 23.	9	10	5.7 14.8 24.	.1 10.8 92.1 96.	4	130.1 454.2 9	912.5 495.	9 252 38.7	327.2 54.	.4 629.8 46	5.5 209.2	23.9
2-C4-179437 375.9 5	74 43.950	69.698 16.8	11.2 13.6	8.7 261.8 24.	5 17 17.5	10.4 11.5	3.6 7.8	70.8 74.	7 62 65.3	10	485.5 458.	2 315 36.4	352.3 43.	.4 699.9 37	7.3 188.3	21.4
2-C4-179438 330.5 6 2-C4-179439 338.6 7	<u>/4</u> 43.950 74 43.950	<u>69.698</u>		155 22.	7 11.9 22.3	1.3 11.6 10	0.5 13.1 ·	$$ 3.5 $77.7 12.6 88.9 132$	1 /6./ 99.1 8 94.2 73	8	800.2 461. 674.9 478	2 352.6 44.7 3 315.5 <i>A</i> A.A	3/0 44.	<u>.9 666.5 40</u> 4 650.1 41	D./ 184.3	20.5
2-C4-179440 331.2 8	74 43.950	69.698 7.3	12.9 5.5	12.4 157.5 2	4	37.4 18.2	30 13.2			596.3 497 10	759.8 491.	6 389.6 46.2	275.8 49.	.1 737.2 42	2.4 196.5	25.2
2-C4-179441 332.8 9	74 43.950	69.698 6.3	15.4	110.1 24.	2 28.8 23.9	:	<u>8.2 8.9 9</u> .	5 8.3 20.9 75.	3 18.4 67.6	716.5 552.3 9	666.4 473.	5 303.3 37.3	301.3 41.	.4 782.4 41	1.5 242.6	24
2-C4-179442 352.4 10	74 43.950	69.698	1.9	11.8 29.6 11.	3 3.2 24	:	5.5 8.8 13.	2 10 56.9 90.	8	9	679.7 459.	1 348.4 43.3	370.8 43.	.9 692.9 39	9.8 244.7	23.6
2-C4-179443 342.2 11	74 43.950	69.698	19.2	13.1 40.7 1	1	9.5 12.3	7.6 13.3 6.	.8 8.6 142.1 120.	5 78.8 113.1	396.7 419.8	9563 467.	3 294 41.9	317.3 44.	.3 829.8 39	9.6 164.2	23
1-NG-179011 1421 5 S	74 43.930	69.698 32.0 69.698 20.2	7.8 28.8	8.2 96.8 11	2 80 28.8	2.6 4.8	$\frac{0.3}{0.8}$ $\frac{3.8}{4.3}$ $\frac{5.8}{6}$	3 45	-103.1 74.4	916.2 332.3 8	043.4 258	2 330.7 34.3 6 316.5 27.5	322.6 31	$\frac{.5}{.1}$ $\frac{.533.2}{.509.7}$ $\frac{.533}{.2}$	27 132.1	12.1
2-NG-179012 1278.3 S	76 43.954	69.698 59.9	17.7 50.8	13.9 109.1 18.	5	0.7 7.7	0.2 11.8 8.	.7 7 46.3 82.	3 324.2 123.9	9	439.8 401.	3 246.9 36.7	360.6 38.	.3 598.7 35	5.7 169.7	19.2
2-C4-179213 472.6 1	77 43.955	69.697 9.6	8 21.6	8.1 54.6 11.	8	3.1 6.8	2.7 5.6 2.	.7 5.7 127.4 62.	5 44.1 50.9	282 327.1 6	476.9 332.	2 160.7 28.2	168.6 28.	.6 371.1 25	5.7 85	14.9
2-C4-179214 368.6 2	77 43.955	69.697	14.8	9.2 106.6 20.	8	2.7 9.1	4.1 7.6 17.	8 7.6 52.3 104.	3 153 98	806.2 509.1 8	812.2 44	6 241.7 35.7	295.3 40.	.1 491.3 35	5.2 149.5	21.7
2-C4-179215 324.9 3 2-C4-179216 267.7 4	77 43.955	69.697 13 69.697 2.3	11.3	128.5 2 11.1 161.3 29	4 23.1 20.6 5 59 38 1	73 11 2 4	4.3 9.8	$$ $/1.3$ $//.4$ 99 346 141	<u>9 218.9 110.7</u> 5 100.8 133.1	11/4.3 430.9 11	315.2 514. 10515 559	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	443.5 46. 254.9 51	$\frac{.6}{5}$ 625.8 40	$5.2 177.3 \\ 5.7 132.8 \\ $	23.4
2-C4-179217 335.6 5	77 43.955	69.697 5.4	12.2 2.3	8.4 221.9 25.	7 2.2 18.5	13 12.6	12 10.8	4 8.9 110.4 80.	5	573.9 481.6 12	209.5 52	1 332.8 42.3	379.9 49.	.3 630.9 39	9.5 152.1	24
2-C4-179218 314 6	77 43.955	69.697 13.4	13.6 6.1	13.2 222.2 29.	3	44.1 15				13	888.4 576.4	4 327 47.2	315.9 47.	.4 889.5 45	5.4 230.5	27.7
2-C4-179219 331.7 7	77 43.955	69.697	6.8	12.6 202.3 23.	5	10	0.4 10.2 11.	5 9.5		12	823.3 531.	8 459.1 49.3	369.8 46.	.6 856.2 46	5.4 233.7	24.8
2-C4-179220 337.6 8	77 43.955	69.697 12.5	14.4 13.1	10.4 130.1 23.	$\frac{1002}{237}$	25.1 11.5 1 5.2 11.6 2	$\frac{7.2}{8.2}$ 8.9 4.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	903.3 551.	$\frac{3}{4}$ $\frac{40.1}{40.1}$	326.2 42.	<u>.4 988.2 44</u> 8 1053 7 47	1.4 238.1 7.1 264.6	25.8
2-C4-179221 310.5 9 2-C4-179222 324.7 10	77 43.955	69.697 12.1	12.8 11.5	14.3 167 25.	9 109.2 33.7 9 11.6 20.5	2 11.2	5.7 16.6 1.	3 9.1	- 11.3 73.1		14413 581.	8 385.6 45.9	352.4 49.	.8 924.9 47	7.3 274.3	26.8
2-C4-179223 344.6 11	77 43.955	69.697 25.3	12.1	67.7 14.	3 21.8 20.8	2.8 11.2	5 8.9 9.	.8 9.1 53.8 83.	2 60.5 74	14	133.9 56	5 398.6 46.3	462.4 47.	.7 939.5	45 284.8	26.6
2-C4-179224 611.3 12	77 43.955	69.697 4.9	7.9 2.8	5.8 75 1	1	(5.4 6.7 ·	26.5 53.	8 196.6 77.1	9	986.3 352.	6 247.4 29.8	288 31.	.4 621.5 27	7.9 165.2	16.3
1-NG-179013 1234.3 S	77 43.955	69.697 70.5	1.9 66.9	11.9 78 13.	8	'	7.4 6.1 1.	7 5.8	- 593.9 85.9	348.2 314.8 8	557.1 28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	308.4 33.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3 134.9	14.9
2-NG-179014 1414.4 3 2-NG-179015 1410.7 S	78 43.944	69.699 19.9	14.9 19.0 15.4 42	10.3 01.1 $13.12.1$ 101.3 1	5	13.9 9.6	${2.8}$ 6.7 7.	7 6.5 59.4 72.	7 255.4 73.9	414.8 364.9 9	297.1 376.	6 248.9 31.8	359.8 37.	$\frac{.4}{.5}$ $\frac{.5}{436.2}$ $\frac{.32}{.5}$	2.8 131	18.6
2-NG-179016 1405.8 S	80 43.944	69.700 45.8	13.9 23.2	8.5 82.9 17.	7	10.8 7.3	.9 6.8		- 296.6 95.4	9	150.2 372.	8 325.1 34.3	333.7 37.	.7 599.7 34	4.6 177.8	18.2
1-NG-179017 1464.5 S	81 43.943	69.697 40.8	10.7 53.2	10.7 26.9 7.	1 0.3 13.6	4	1.6 5.3 2.	4 5.8 43.1 45.	7 168 52.7	181.1 139.4	7610 245.	7 303 25.5	348.3 28.	.5 552.5 28	3.7 130.3	12.5
1-NG-179018 1417.8 S	82 43.944	69.697 80.4	1.3 81	10.1 72.4 1	3 107.3 20.4	1.1 4.6		18.5 57.	2 450.6 88.9	379.9 230.4 7	645.7 248.	5 289.2 26.3	312.6 3	30 474 29	9.5 119	13.2
1-rx0-179020 1418.5 S 1-C3-179462 109.1 1	85 43 945	09.099 23.1 69.700 0.8	15.4	71 15	2	1	3.1 10.7	29.1 113	5 186.5 103 5	550.6 386.9 8	532.2 504	1 179.8 42.6	225.5 56	.1 437.1 51	1.1 120.9	26.1
1-C3-179463 93.5 2	85 43.945	69.700	13.9	10.9 43.8 21.	2	1.5 13.1 1	5.2 15.6		- 221.9 133.8	871.9 503.6 9	053.5 570.	3 282.6 57.6	271.1 58.	.3 569.5	57 141.4	31.1
1-C3-179464 136.3 3	85 43.945	69.700	17	9.1 57.3 20.	8	20.5 10.2 1	.6 12.3 9.	.3 11.8 164.2 84.	1 134.3 76	909.7 313.7 7	459.1 429.	9 307.3 42.1	251.4 47.	.2 510.1 41	1.1 137.9	24.8
1-C3-179465 124.7 4	85 43.945	69.700 6.3	10.9 6.2	12.3 72.2 23.	5	12.9 10.1 1	9 9.4 2.	3 8.4 83.6 88.	7	509.2 373.1 7	861.4 455.	9 347.9 45.7	333.1 47.	.7 438.3 41	1.3 149.1	$\frac{22}{227}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 43.945 85 43.945	69.700 6.7 69.700 45.3	18.5	/2.8 I 13.8 69.3 16	8 11.2 24.8	69 125	14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1713 975	<u>328.9</u> 491.3 9 803.1 445.2 8	006.8 507. 551.5 494	5 304.4 51.3 3 352 7 51 3	4/6./ 56. 371.4 54	.8 687.8 51 4 726.5 50	1.8 165.5	$\frac{23.7}{27.3}$
2-NG-179021 1396.1 S	85 43.945	69.700 60.6	16.9 32.6	12.1 64.9 16.	3	4.8 7	5.1 9.9 6.	4 6.7 83.9 113.	4 348.4 98.2	8	318.4 362.	1 372.3 40.5	374.1 38.	.2 513.9 33	3.4 153.8	18.1
1-NG-179022 1375.4 S	86 43.945	69.701 37.4	9.9 11.8	5.8 58.2 10.	5	(5.3 5 4.	2 4.4	- 167.5 56.6	460.8 265.9 8	740.7 263.	6 365.1 27.5	330 30.	.8 514.5	30 126.8	14.2
1-NG-179023 1419.4 S	87 43.946	<u>69.699</u> 27.9	9.8 30.3	7.7 77.9 12.	1 19 10.8	0.7 4.7	5.	3 4.3 1.9 48.	<u>3 162.3 69.2</u>	252 261.2 7	316.8 245.	4 292.7 26.2	341 29.	.1 567 29	9.5 118.8	12.7
1-NG-179024 1390.3 S	88 43.946	69.700 29.5 69.698 81.4	10.3 21.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{7}$ 2.7 11.8 7 38 4 12 7	91 55	 6 67 2	<u>7 5.6 147.4 77.</u> 5 6 53.7 49	+ 128.1 67.8 5 232.4 69.7	810 316 7 1269.2 283.4 7	8/3.9 254. 709.2 250	8 278.1 26.6	355.8 30.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.2 151.9	13.9
2-NG-179030 1408.8 S	91 43.940	69.700 1.9	8.9 30.6	11.4 68 5 13	8	12.8 7.9	1	4 6.2 7 75	9 317.9 100.4	958.5 364 8	400.8 361	9 275.4 34.6	278.6 36	.0 555.8 29	3.2 116.4	13.7
2-NG-179031 1350.5 S	92 43.948	69.700 35.4	12.2 17.6	9.9 133.6 20.	4		10.	4 7.2	- 234.4 78.3	712.4 507.2 8	308.1 367.	3 307.1 37.5	436.2 39.	.9 587.7 34	4.7 137.4	18.3
2-NG-179032 1368.5 S	93 43.948	69.701 23.5	15.2 21.2	8.8 68.5 14.	7	9.2 8.6	3.3 6.6		- 379 89.6	575.6 593.8	8302 362.	3 256.1 33	327 32.	.5 437.6 33	3.1 121.9	17.4
2-NG-179033 1406.8 S	94 43.949	69.700 41.6	13.7 16.9	9.5 80.2 15.	1 111.3 31.9	2 6.9	2.3 6.2 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 111.6 74.6	8	738.8 372.	5 301.7 36.5	340.5 36.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.3 129.9	18.2
2-NG-179039 1413.6 S	95 43.949	69.700 35.3	16 22.4	0.4 79.5 17. 10.1 78.2 14)	1.3 6.7	$$ 1.	<u>.9 9.0 13.3 58.</u> <u>.3 6.2</u>	- 134.7 69.9	<u>200.0</u> 414.2 316.4 404.8 8	678.9 369	8 323.7 34.5	<u>407.0</u> 39. 361.9 3	.0 455.0 29 36 509.7	32 113 3	10.9
2-NG-179040 1431.5 S	98 43.951	69.700 11.1	8.8 13.8	7.7 60.4 1	4	7 8.7		103.4 71.	29.7 56.5	8	630.3 366. ¹	9 300.2 30.7	412.1 3	37 548.2 32	2.7 135.4	17.9
2-C4-179104 507.8 1	99 43.952	69.698 6.7	8.5 7.6	7.5 90.3 12.	5 3.7 11.1	9.6 9			- 43.5 46.6	342 341.7 6	559.1 31	0 147.5 25.5	247.8 28.	.6 377 24	4.7 124	14.4

		nuclide			60	Co	60Co	137Cs	65Zn	22Na	54	Mn	58Ca)	133E	Ba	7Be	210Pb	40	K	214Bi	214	Pb	212P	b	208T	ī
		Gamma energy (keV)			1173	3.23	1332.51	661.62	1115.52	1274.54	834	4.81	810.7	5	383.	.7	477.56	46.52	146	0.75	609.32	351.	99	238.6	3	583.14	1
		Branching Ratio			0.99	986	0.9998	0.8462	0.5075	0.9994	0.9	9998	0.994	5	0.088	84	0.103	0.04	0.	107	0.4609	0.3	/1	0.43	·	0.861	
sample mass(g)) depth(in)	station	lat.	long.	pCi/kg	+/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/k	g +/-	pCi/kg	+/- I	pCi/kg	+/-	pCi/kg +/-	pCi/kg +/	pCi/kg	+/-	pCi/kg +/	- pCi/kg	+/-	pCi/kg	+/- p(Ci/kg	+/-
			10.050	60,600		11.5		107.7 01.5	50 10 1			0.05			100.0		221 6 101 0		0.40.6.0	400.0	212		15.0		10.5	1.51.0	
2-C4-179105 308.1 2-C4-179106 287.4	$\frac{1}{1}$ $\frac{2}{3}$	99	43.952	69.698 69.698	<u>5.9</u> 27.2	20.5	3.9 8.9	135.5 24.6	7.3 19.6	9.2 11.4	$\begin{array}{ccc} 4 & 2. \\ 4 & 6 \end{array}$.8 8.7 3 12.6	5.5	7.6	132.8	98 107 7	221.6 101.9	191.5 28	9496.3	490.2	222.1 39	$\frac{46}{5}$ $\frac{358.2}{269.2}$	45.2	567.8 643.2	40.5	151.2 161.5	$\frac{22.9}{21.9}$
2-C4-179107 291.1	1 4	99	43.952	69.698	2.8	15.9	0.5 9.8	127.2 24.2	54.2 43.8	19.7 10.	1 5.	.2 9.4	3.6	8.6	79.5	80.7	250.6 122.8	926.3 51	1.6 9538.8	513.2	319.9 47	1.1 386.1	46	617.6	44.1	144.1	24.8
2-C4-179108 341.7	7 5	99	43.952	69.698	7.1	13	16.6 10.2	99.4 19.1	20.9 25.7	18.1 10.9	9 7.	.6 8.3	2.1	9.6	71.1	124.3		1224 56	3.8 10297.3	478.5	251.7 38	3.3 237.3	36.4	493.9	41.5	133.5	19.9
2-C4-179109 294.1 2-C4-179110 324.3	l 6	99	43.952	69.698	11.3	13.5	11.2 16.2	<u>117.8</u> 21.6 150.9 24.1	15.3 19.3		- 12.	.5 9.2	13.7	9.1		 81 Q	27.8 93	262 46	3.2 9983.7 7.4 114163	520.4	297.2 39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.4	655.6 789.9	42.8 2	218.9 205.1	$\frac{24.6}{24.2}$
2-C4-179111 358.8	8 8	99	43.952	69.698	23.5	16.5	11.4 9.3	155.1 23.8					10.6	8	103.2	76.5			11130.2	468.6	298.7 41	.4 359.2	42.4	770.1	40.4	192.3	24
2-C4-179112 321.7	7 9	99	43.952	69.698	3.7	10.8		139.3 22.1	18.7 21.3		- 12.	.1 10.7	5.9	8.6			172.8 90.7	1282.9 62	5.8 11637.9	531.2	333.2 47	7.3 368.3	49.4	939.2	44.3	219.4	26.2
2-C4-179113 230.6	5 10	99	43.952	69.698	1.3	15.6	1.5 11.3	148.2 31.7	24.4 37.3	26.9 14.9	9 72.	.7 21.4	3.7	11.3				111.4 58	3.6 13274	665.7	388.1 59	0.5 447.8	62.5	1102.4	56.5 2	295.3	$\frac{32.7}{21.2}$
1-NG-179041 1428	3 S	99	43.952	69.698	4.2	13.1	31.2 8.5	80.2 12.4		1.5 4.	1 8.	.1 8.1	3.5	4.3			261.6 78.7	551.5 14	9890.0	241.2	235.1 24	.8 244.2	29	473.3	28	152.2	$\frac{21.2}{13.4}$
1-NG-179042 1338.3	3 S	100	43.952	69.698	14.2	8.1	21 7.3	71.6 11.2			-	5 4.6	2.3	4.5	17.7	69.3	170.2 48.9	908.5 3	25 8563.4	272.8	303.3 26	5.9 386	30.7	590.5	32	151.7	14.5
2-C4-179225 399.2	2 1	101	43.952	69.699	24.1	14.3	6.4 9.1	81 18.1	124.3 39.9	5.7 7.2	7 11.	.6 11	6.4	6.5	46.4	63.7		358.4 48	5.2 8379.9	394.6	252 35	5.1 204.6	35.7	394.2	30.3	117.1	20.4
2-C4-179226 262.0 2-C4-179227 256.9	$\frac{2}{2}$	101	43.952	69.699	4.7	13.7		111.5 22.1	107.3 36.3	6.8 1	7 -		12.5	9.9	108.2	128.5	28.6 81.8	1237.6 67	11141.0	610.2	351.1	43 350.6	52.0 46.9	585 600.9	40.5	118.5	$\frac{27.5}{26.7}$
2-C4-179228 243.1	1 4	101	43.952	69.699	62.4	25	5.6 14.8	99.3 24		10.7 12.	1 7.	.1 13.9			114.3	101.7	3.4 104.9	870.3 70	.5 11650.3	599.8	389.5 54	492.6	57	681.3	49.4	210.6	28.9
2-C4-179229 269.6	5 5	101	43.952	69.699	10.1	11.8	9.1 13.7	101.7 21.5	20.9 24.2		-	8 13.5	10.2	10.1			72.8 85.8	598.7 52	0.8 11361.5	567.6	464.5 51	.6 335	54.3	539.7	45.9	177.4	25.9
2-C4-179230 262.3 2-C4-179231 332.7	5 6 7 7	101	43.952	69.699 69.699	8.3	18.8	25.1 13.9	<u>154.1</u> <u>31.1</u> <u>169.3</u> <u>22.4</u>	1.4 19.8	13.1 17. 11.2 13	$\frac{1}{3}$ $\frac{3}{25}$	3 11.6	1.5	8.7	151.5	1/1.8	93 77.7	505.9 48	0.8 11775.5 8.5 10551.7	573.2	298.1 36	4 365.6	43.6	660.1	47.3	$\frac{176.2}{201}$	$\frac{21.9}{24.6}$
2-C4-179232 364.4	4 8	101	43.952	69.699	5	8.6	1.9 8.8	161.2 23.7	12.4 30.5	3.6 12	2 11.	.3 9.2	1.9	9.5	22.2	82.6	20.2 105.8		11063.8	477.6	295.1 40	0.9 357.9	44.2	679.5	38.5	187.9	22.7
2-C4-179233 315.4	4 9	101	43.952	69.699			0.7 10	212.8 24.1		4.7 11.	3 15.	.5 11.1			51.4	89.3		286.9 36	0.4 11331.8	511.6	346.4 46	5.1 329	47.2	802.2	44.6	219.6	22.6
2-C4-179234 502.3	3 10 1 S	101	43.952	69.699 69.699	13.2	8.6	6.8 6.3 20.4 8.1	163.8 17.3 85.1 12.5	58.4 26.7	6.8 6. 8 9 4	8 8.	.2 8.9	4.2	7.9 4.1	26.1	45.3	<u>73.2</u> 78.9 167.7 90.3	1021 5 23	8040.2	263.4	213.4	30 216.2 5 344 5	31.2	391.3	27.9	131.7	$\frac{15.8}{13.3}$
1-NG-179044 1354.3	3 S	101	43.954	69.698	30.7	9.2	11.2 5.2	89.9 12			- 5.	.8 5.2	1.3	4.9	19.4	79.1	451.1 68.7	433.8 23	2.6 7649.6	250.9	311.6 27	270.6	29.8	486.1	28.8	115.6	13.4
1-NG-179045 1350.2	2 S	103	43.954	69.698	16.5	6.3	16.5 6.2	118.5 12.7	16.7 17.9		- 1.	.4 5.2	2.3	4.3	15.6	73.9	235.3 87.7	474.4 30	5.2 7232.4	249	231.3 25	5.2 225	28.5	505.8	27.7	130.5	13.4
1-NG-179049 1329.5	5 S	104	43.955	69.697	50.6	10.6	23.5 8.9	84 13.6		0.4 4.3	5 8.	.9 4.7	8.1	5.3		02.4	488.4 98.6	718.1 31	0.2 7908.1	259.8	232.3 25	6.7 296.5 36 320.8	29.8	515.5	28.8	137.1	13.7
2-C4-179201 410.8 2-C4-179202 342.7	7 2	105	43.958	69.698			11.9 7.8	84.8 17.1	35.1 28.1	4.8 9.	1 20.	.2 11				92.4	35.8 66.4	219.5 45	2.5 10378.5	487.4	297.6 43	3.9 442	52.6	636.2	38	143.5	17.4
2-C4-179203 360.6	5 3	105	43.958	69.698	3.1	13.4	14 8	81.7 19.9	9.4 17		- 1.	.2 7.6					64.6 88.7		8873.1	437.5	321.3 39	0.5 304.6	40.8	486.8	35.7	162.7	21.1
2-C4-179204 315.3	3 4	105	43.958	69.698	2.9	12		70.1 23.4			- 8.	.9 8.9			216.6	135.6	18.1 86.4		11258.4	525.9	301.4 46	5.4 371.8	47.2	667.7	41.9	183.3	$\frac{23.1}{21}$
2-C4-179205 329.1 2-C4-179206 317.7	7 6	105	43.958	69.698	3.8	11.9		101.8 23.5	5.3 19.7		- 7.	.7 11.5					54 75.4		11457.1	527.8	323.9 39	0.4 396.1	46.1	698.1	41.1 2	221.6	24.5
2-C4-179207 313.2	2 7	105	43.958	69.698	8.7	11.4	15.2 10.2	24.8 17.5	43.2 24.5		- 3.	.5 8.7	0.2	12.4	66.5	81.5	53.5 102.2		10736.2	520.3	297.9 45	5.2 352.4	51	665.9	41.1	230.5	21.8
2-C4-179208 369.8	8 8	105	43.958	69.698	14.7	11.1	14.3 13	24.5 13.6	10.7 20.1		- 4.	.1 8.1			73	93		178.6 4	89 13405.1	519.4	245.8 44	474.8	46	897.8	41.2 2	243.3	24.5
2-C4-179209 380.5 2-C4-179210 380.5	5 9	105	43.958	69.698 69.698	5.8		6.3 7.8	9.2 15.7		1.8 13.	2 - 2 -		11.5	10.2	48.7	93.9	5.4 95.5	298.9 42	13891.3	526.9	411.1 43	8.7 553.4	46.3	1083.9	44.2 2	327.1	$\frac{23.2}{25.3}$
1-C4-179211 266.9	9 11	105	43.958	69.698	11	8.9		12.6 10.2		1.4 9.2	2 1.	.7 9.5	10.9	7			205.1 134		8845.9	368.8	331.1 36	5.5 352.7	43.1	1010.3	45.7	233.4	21.4
2-C4-179212 328	3 12	105	43.958	69.698			19.4 12.1	10 10.8	13.8 35.7						176.5	122.3	97.2 75.3	622.6 60	5.8 14640	582	401.9 50	0.9 403.8	50.1	1052.1	48.1 3	325.3	27.7
1-NG-179050 1286.5 1-NG-179051 1409.5	5 S	105	43.958	69.698	73.5	10.5	72 11.4	70.8 11	5.1 15	2.3 5.9 5.1	5 2.	.2 7.5	8.0		25.2 16.8	49.3	488.4 81.6	507.5 2	64 7907	268.8	306 26	5.5 <u>331.7</u>	31.4	593.7	29.9	130.0	$\frac{14.7}{13.8}$
1-NG-179052 1331.5	5 S	107	43.948	69.696	125.9	14	99.7 11.6	36.3 11.8		3.9 4.1	7 1.	.5 4.8	5.2	7.8	18.4	62	422.1 86.8	816.1 27	5.9 7848	259.6	286.2 27	1.1 324.7	32.8	568.7	32.6	152.4	13.5
2-C4-179315 299.5	5 1	108	43.949	69.696	24.1	13	72.7 17.6	43.7 16.4		8 11.	8 2.	.9 13.9	8.5	8.7	72.2	94.8	229.3 91.4	69.4 48	3.5 9444.8	484.5	222.4 42	2.5 217.7	41.1	402.6	37.3	85.5	22.9
2-C4-179316 334 2-C4-179317 348.8	+ 2	108	43.949	69.696 69.696	18.9	11.6		41.5 13	23.6 19.4	6.6 10.4	4 /. 1 -	.1 8.1	6.3	8	114.4	73.1	12.2 99	<u>695.7</u> 52 94.7 40	1.3 9258.1 1.2 8661.5	479.6	221.2 39	$\frac{7.3}{36}$ 216.8	32.5	427.1	37.7	$\frac{134.2}{100.9}$	$\frac{21.6}{21.1}$
2-C4-179318 288.6	5 <u>4</u>	108	43.949	69.696	17.7	11.8	18.9 12	107.3 20.2	87.9 26.4	12.1 1	3 0.	.7 9.3			101.6	94.3	48.2 86.9	940.7 42	8.8 10570.3	525	278.8 42	2.4 269.9	45.4	522.9	40.2	153.4	24.8
2-C4-179319 320.6	5 5	108	43.949	69.696	0.9	9.4	20.9 16.1	70.2 22			- 21.	.6 8.5	6.4	9.3	101.1	69.3	53.5 106.8		9742.3	483.2	239.1	42 273	43.2	459.5	36.5	95.8	20.9
2-C4-179320 314.2 2-C4-179321 314.3	2 6	108	43.949	69.696 69.696	5.1	14.6	13 10.9	68.2 14.9 100.9 18.7	14.4 23.1		- 2.	.8 13.6	5.4		36.8	98.3 84.7	145.7 131	268 5 40	9852.5 8 5 9496.4	491.1	288.1 43	$\frac{5.1}{2}$ $\frac{272.9}{267.2}$	34.4	509	39.3	106	$\frac{21.9}{20}$
2-C4-179322 282.1	l 8	100	43.949	69.696	12.8	15	8.4 10.6	112.4 19.4	13.3 20.7		- 13.	.5 14.5	4.5	9				390.1 33	5.8 9646.5	511.9	232.4 49	0.1 303.1	47	428	37.2	167	23.2
2-C4-179323 261.6	5 9	108	43.949	69.696	39.1	15.1	27.3 12.5	128.3 24.3	70.4 33.6	7.5 1	1 32.	.7 13.6	8.1	10.1	88.5	91.8		320.2 4	08 10435.5	549.8	209.5 38	3.5 300.6	48	659.5	42.7	139.3	24.7
1-NG-179053 1347.1		108	43.949	69.696 69.694	40.8	7.8	60.3 11.2	100.3 12.6	8.8 9.8	4.4 5.9	9 - 5 4	987			7.8	46.2	433.4 69.3	233.2 31	7.7 7804.8	257.3	229.3 27	7 226.8 7 381.8	29	488.2	32.4	122.3	15
2-NG-179055 1667.5	5 S	110	43.951	69.693	44.8	15.8	37.9 11.7	32.3 12.9	5 19.3	8.7 9.1	3 33.	.1 11.6	5.9	7.9			314.9 82.2	394.8 47	5.3 11414	383.1	452.4 36	5.2 432.1	37.6	475.1	29.5	179.6	18.6
1-NG-179056 1579.5	5 S	111	43.956	69.689	35.7	9.5	31.3 7.1	21.6 8.4	11.5 10.8		- 1.	.7 4.5	9.3	6.3	106.5	60	121 94.1	948 32	9145	259.3	420.7 27	461.7	32.2	704.1	30.9	156.1	13.3
2-NG-179060 1734.7	7 S	112	43.951	69.692	82	18.7	72.1 13.9	6.5 11.8		12 8.	8 0.	.8 7.4	6.4	7.3	99.5	85.5	111.3 92.4 133.6 74	525.4 45	0.5 11814.5	387.3	324.3 33	3.8 415.3 36 246.0	37.4	589.1	44.3	182.8	18.5
2-C4-179302 397.0 2-C4-179303 342	2 2	113	43.945	69.696	22.5	14.5	1.7 7.5	58.2 15.4			- 5.	.1 8.1	9.7	0.4		 99.5	64.5 66.3	4	10420	410.8	251.5 42	240.9	41.8	+33.9 566	37.3	155.4	$\frac{17.3}{20.5}$
2-C4-179304 320.5	5 3	113	43.945	69.696	10.3	11.3		74.1 17.2	132.5 35	8.1	9 -		7	9.6	79.5	127.8	76.5 114		10134.8	484.8	215.7 37	2.6 297.6	44.4	616.1	37.8	133.1	22.9
2-C4-179305 335.8 2 C4 179206 2442	8 4	113	43.945	69.696	22.7	13.7	14.2 9.9	50 21.5	1.7 21.3	27.7 1	6 12.	.9 8.9			9.2	105.4	65.7 69.3		10405.9	480.5	276.8 44	.9 279.5	44.7	606.4	39.1	141.9	21.8
2-C4-179307 336.1	2 <u>5</u> 1 6	113	43.945	69.696	25.2	12.7	15.5 10.4	57.8 21.3	4.5 18	6.8 14.2	- 1. 3 1.	.9 12.5	3.1	8.5	148.1	 79.1	189.7 104.2	41	9808.7	474.9	184.7 36	5.3 356.3	44.9	588.9	39.6	142	$\frac{17.7}{24.5}$
2-C4-179308 342	2 7	113	43.945	69.696	4.4	10.6	10 10	102.1 21.1	21.5 22.1	23.6 12.	6 6.	.3 8.3			91.7	73.7	14.4 83.7	371.5 5	65 9411.9	456.7	207.3 43	3.2 261.4	42.8	542.1	37	115.3	21.4
2-C4-179309 338.2	2 8	113	43.945	69.696			1 10.1	107.1 19.6	35 21.4	20.6 12.	6 -		9.6	9.9	118.7	157.2	222.4 142.9	473.7 33	7.1 11107	507.3	233.8 31	.4 493.6	46.2	564.8	41.2	180.3	$\frac{22.4}{22.7}$
2-04-179310 343.9	7 7	113	43.743	07.070				90.4 ZU.3	14.2 19.3	17.0 12	∠ I.J.	.1 11.0	4.3	0			33.1 09.3	09.3 40	11431	501.8	171.0 33	.il 343.3	43.2	000.9	+J.0 /	220.0	23.I

	nuclide Gamma energy (keV)	60Co	60C	0 137Cs	65Zn	22Na	54Mn 58	8Co 133	BBa	7Be 477 56	210Pb	40K	214Bi 609 32	214Pb	212Pb	2081	<u>ГІ</u> 14
	Branching Ratio	0.9986	0.999	0.8462	0.5075	0.9994	0.9998 0.9	9945 0.08	884	0.103	0.04	0.107	0.4609	0.371	0.431	0.86	51
sample mass(g) depth(in)	station lat.	long. pCi/kg	+/- pCi/kg	+/- pCi/kg +/-	pCi/kg +/-	pCi/kg +/- pC	Ci/kg +/- pCi/k	g +/- pCi/kg	+/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg +/-	pCi/kg	+/-
2-C4-179311 342.5 10	113 //3 9/5	69.696		129 19	8 10 7 22 5	89 131	11 96 1	9 10 83.4	1/2 9	34.6 102.5		10986.8 /199	1 318 /33	360 46	752.3 41	3 271 5	24.2
2-C4-179311 342.5 10 2-C4-179312 344.1 11	113 43.945	69.696		116.7 19.	8 <u>10.7</u> 22.3 8 <u>3.3</u> 25.3	10.9 10.5	0.6 9.1	3.4	73.2	110.5 78	80 623.2	10380.8 499.4	3 291.3 44.8	474.8 47.3	631.9 41.	<u>.8</u> 196.4	24.2
2-C4-179313 237.5 12 2-C4-179314 1661 13	<u>113</u> 43.945 113 43.945	69.696 0.4 69.696 39.9	22 14.8 20.5 20.5	16.7 161.1 25. 23 80.1 2	7 8 407 44	23.3 11.7	25.5 17.8 91 146 3	 8 15 4 148 7		194.5 132.2	584.4 690.3 876.1 605.6	14202 675.4 13983 2 805.0	4 <u>390.7</u> 60.8 5 350.8 70.9	319.4 60.4 426.2 77.2	834.6 54. 883.3 68	$\frac{1}{4}$ 202.1	34.3
1-NG-179061 1350.3 S	113 43.945	69.696 73.5	13.1 90.3	13 61.2 9.	5 93.1 19.4	3.1 4.8		110.3	70.1	364.5 98.8	1112 321.8	7897.2 258.4	4 254.2 26.3	294.1 29.8	487.2 29.	1 134.2	13.8
1-NG-179062 1302.6 S 1-NG-179063 1361.5 S	<u> </u>	69.696 71.8 69.696 103.5	15.2 106.4 14.3 87.4	13.2 57.2 11. 11.5 71.6 10.	9 7	4.8 4.8	3.1 6.3 6 5.5 4.7 1	<u>.5 6.2 34.3</u> <u>.4 4.7</u>	50.9	379.9 108.5 386.5 108	<u>484.5</u> 265.9 <u>553.4</u> 208	7685.5 260. 7743.9 254.	1 268.3 27.9 7 273.8 26.8	255 31.9 288.2 31	576.8 32. 524.4 29.	<u>8 154.5</u> 1 129.4	14.6
2-NG-179064 1307.5 S	116 43.946	69.695 124.8	18.8 168.7	20.1 82.7 17.	1 4.2 16.5	3.6 8.2	4.7 8.2 15	.6 9		225.6 112.9		8735.6 389.4	4 278.3 36.4	386.9 39.8	592.2 36.	6 149.9	15.8
2-C4-179293 304.8 1 2-C4-179294 182.6 2	<u> </u>	<u>69.693</u> <u>25.7</u> <u>69.693</u> <u>18.7</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4 23.5	0.7 8.1 4 48.6 20.8	.9 8.8		98.5 147.4	529.6 433	8939.4 492.4 12074.2 736.7	4 217.4 42.4 7 438.8 67.3	326.3 36 453.4 61.8	471 38. 745.9 61.	$\frac{4}{9}$ 148.2	23.9
2-C4-179295 269.1 3	117 43.949	69.693 17.9	14.3 5.1	14.3 55.3 1	5 11.2 21.8	19.4 15.3	1.6 9.6 6	.8 11.7 30.1	86.1	63.8 89.8	377.2 360.7	10267.1 553.9	9 289.6 47.1	270.6 49.7	354.9 37.	9 122.9	21.4
2-C4-179296 259.1 4 2-C4-179297 338.4 5	<u>117</u> 43.949 117 43.949	69.693 5.8 69.693 12.5	12.8 10.5 13 28.1	11.7 93.2 24. 13 38.5 14.	7 32.6 29.4 3 15.5 27.9	3.8 10	5.8 10.6	 .6 7.8 88.9	74.3	118.3 83.5 137.7 68	1087.7 492.8	10476 558. 9696 469.	3 301.2 49.5 2 236.8 43.1	<u>331.9</u> 52 361.4 42.5	<u>645</u> 45. 481.9 37.	6 123.8 8 144.5	$\frac{26.5}{21.5}$
2-C4-179298 297.8 6	117 43.949	69.693 10.1	12.5 4.6	9 56 16.	5 45.4 29.1	7.7 10.2	3.4 12.9 14	.2 8.5 27.2	81.3	157.8 103.6	209.4 443.3	9354.4 492	3 291.2 39.7	356.1 46.2	591.5 41.	5 117	19.9
2-C4-179299 191.1 7 2-C4-179300 501.6 8	<u>117</u> 43.949 117 43.949	69.693 37.8 69.693 22.8	29.5 10.4 15.3	72.8 28. 8.8 42.8 13.	1 1	14.8 18.3 5.2 8.6	40.7 17.5 8 6 9	<u>.9 12 96.9</u> 20.8	198.3 91.2	25.7 107 24.4 58.9	469.9 277	10684.5 649.8 7678.2 340	3 403 66.9 5 192.2 31.8	446.1 82.6 259 30.5	634.9 5 394.9 27.	$\frac{9}{7}$ 171.8	29.7
2-C4-179301 519.3 9	117 43.949	69.693 11.6	7.5 2.2	6.8 34 12.	9	·	0.8 5.6 6	.9 6.2		26 60.8	438 293.8	7556.7 330	0 250.3 29.6	245.3 30.7	479.1 26.	5 110.6	15.8
2-NG-179065 1531.5 S 2-C4-179235 613 1	<u> </u>	<u>69.693</u> <u>14.3</u> <u>69.692</u> <u>19.3</u>	11.2 33.1 13.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 6 63.5 17.8	7.8 8.1	1.1 8.2			302.5 111.5	988.2 601.3	10327.8 385. 8889.8 331.9	1 395.3 35.4 2 284.6 28.6	<u>447.5</u> <u>39.7</u> <u>229.3</u> <u>27.5</u>	710.2 34. 414 23.	$\frac{1}{9}$ 183.3 9 99.2	18.7
2-C4-179235 613 1	118 43.952	69.692 19.3	13.1	7.3 7.	6 63.5 17.8	3 7.8 8.1	7	.9 5.5				8889.8 331.9	284.6 28.6	229.3 27.5	414 23.	9 99.2	11.9
2-C4-179236 369.1 2 2-C4-179237 431.4 3	<u>118</u> 43.952 118 43.952	69.692 1.6 69.692 16.8	18.4 14.6 3.2	25.1 11. 8.9 34.6 17.	4 8.1 25.8 7	22.1 10.6	11.1 9.2 4.5 7.6	43.9	64.6	99.7 78.2 8.5 80.1	329.7 345.5 148.8 387.2	12303.5 494.3 12093.7 459.3	3 448.3 43.9 2 385.9 37.8	459.2 44.6 334.6 39.9	668.5 38. 605.5 33.	$\frac{1}{9}$ 165.2	20
2-C4-179238 351.8 4	118 43.952	69.692 25.1	15.7	28.5 10.	7	·		120.7	88.2	53.4 82.5	432.8 570.5	12612.9 524.2	2 367.8 46.9	397.4 45.3	500.7 34.	9 200.1	22.4
2-C4-179239 497.1 5 2-C4-179240 376.6 6	<u>118</u> 43.952 118 43.952	<u>69.692</u> <u>11.5</u> <u>69.692</u> <u></u>	10.2 8.1	8.7 3.3 9.	 1	6.9 10.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>.7 6.6 218.9</u> .5 9.9 21.5	119.9	63.2 58.3	70.6 392.6	13696.2 456. 13715.4 529.0	7 405.4 37.3 5 471.1 38.8	<u>369.5</u> 36 437.2 42.7	780.9 34.	9 205 6 241.7	19.9
2-C4-179241 386 7	118 43.952	69.692 28.1	11.1 5.3	8.9 4.6 12.	8	10.1 21.1	3.4 8 1	.1 9.2		19.1 105.4		12025.3 486.4	4 422.7 41.9	364.8 43	715.8 37.	7 179.6	22.1
2-C4-179242 415.6 8 2-C4-179243 283.3 9	<u>118</u> 43.952 118 43.952	<u>69.692</u> <u>5.1</u> <u>69.692</u>	10.5 1.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 1.8 18 6		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4 10.4	113	82.2 109.8	1282 607.3	11052 452. 14390 630.	5 354.7 44 1 423.6 53.3	<u> </u>	699.5 35. 764.9 47.	$\frac{1}{3}$ 162.6	$\frac{20.1}{28.1}$
2-C4-179244 414.8 10	118 43.952	69.692 16.2	15.5	3.9 8.	9 12.2 21.4	5.2 10.9	3.1 7.6 7	.7 7.2		121.2 62.7	632.4 518.9	12347.8 482.0	5 400.4 43.5	467.9 42	733.4 36.	4 211.8	21
2-C4-179245 340.9 11 2-C4-179246 850.6 12	<u>118</u> 43.952 118 43.952	<u>69.692</u> <u>15.9</u> <u>69.692</u> <u>2.1</u>	<u>14.3</u> <u>26.4</u> <u>4.7</u>	11.5 3.6 15.	5 3.3 17.8 4 1.8 9.6	14.3 11.1	10.2 8.7	 .1 5 27.2	57.6	39.6 100.1 2.9 30.7		12258.6 537.2 6296.6 236.8	2 369.4 40.8 3 227.5 21.9	321.9 50.4 265.2 21.7	710.5 40. 401.3 19.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.9
2-NG-179066 1776.3 S	118 43.952	69.692 9	8.6 24.5	8.5 28.2 1	1 11.3 14.6	5 1.1 7.2	7.3 6.3 2	.4 7		172.4 64.3	353.2 480	11095.2 368.9	385.5 32.6	406.1 33.4	566.9 29.	7 130.8	16.3
2-NG-179067 1443 S 2-NG-179068 1370.9 S	<u>119</u> 43.953 120 43.948	<u>69.692</u> <u>34.4</u> <u>69.694</u> <u>103.8</u>	15 51.1 16.7 125.4	14.9 71.7 15. 18.8 69.6 11.	6 9 12.2 17.4	1.3 7.3	5 6.9 6 1.3 8.3	.7 10.1 9.9	86.5	$\begin{array}{rrrr} 192.6 & 120 \\ 191.5 & 76.4 \end{array}$	908.4 532.1 455.5 488.9	8760.6 364.2 7860.9 359.2	2 264.4 35.6 7 300.2 35.7	<u>336.5</u> 36.4 <u>330.9</u> 38.2	593.2 35. 559.3 33.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.7
2-NG-179069 1389 S	121 43.949	69.693 104.9	21.4 81.8	18.3 80.3 17.	3 22.8 18.3	1.4 8.1	12.7 7.4 15	.6 7.3 95.9	104.4	315 81	595.4 681.6	8819.6 369.	5 266.9 36.1	287.3 37.7	641.4 34.	9 161.7	17.9
2-NG-179073 1370.9 S 2-NG-179074 1463.6 S	122 43.950 123 43.950	69.692 80.2 69.693 24.2	16.3 21.1 15.2 16.2	12.5 53.9 15. 10.5 50.5 12.	9 3 1.7 12.7	4.5 6.3	24.2 13 9.4 6.4	64.8 86.9	89.9	242.2 86.4 320 71.3	349.8 352	9552.3 396.9 8830.2 364.3	308.8 36.3 3 358.4 35.1	319 39.1 352.9 36.6	621.6 37. 554.9 32.	$\frac{1}{3}$ 131.3	19.5
2-NG-179075 1670.7 S	124 43.950	69.692 10.6	9.2 33.5	9.9	- 6.8 20	27.3 10.2	1	.9 5.9		157.1 88.4	358.6 620.7	10981.9 381.0	5 322 33.6	330.2 35.7	586 31.	6 148.3	14.1
2-NG-179076 1643.5 S 2-NG-179077 1517.6 S	125 43.952 126 43.952	69.692 40.6 69.693 15	12.1 23.2 13.3 48	9.6 44.4 12. 14.9 58.1 13.	2 4 94.4 29	0.6 7.5 4.4 7	<u></u> <u></u> <u>2</u> 15.9 <u>6.8</u> <u>9</u>	$\frac{.7}{.2}$ 6.5 214.5	102.3	253.7 85.6 215.4 105.7	215.7 450.1 89 600	9887.8 362.0 10462.3 387.0	5 401.7 35.4 5 379.2 35.7	441.4 36.6 364.5 37.5	671.5 33. 700.3 33.	1 184.9 .6 200.4	18
2-NG-179078 1563.2 S	127 43.952	69.692 33.2	13.4	48.4 13.	8	1.2 7.4	7.9 7.2	9.5	60	209.9 61.6	345.5 379	10118.4 377.3	3 366.1 35.9	357.6 36.4	607.2 33.	1 153.1	18.7
2-NG-179082 1383.5 S 2-NG-179083 1324.4 S	128 43.949 129 43.948	69.693 94.8 69.694 78.1	22.2 137.1 20.8 98.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>3 93.9 29.8</u> 1 14.3 22.7	19.2 8.3	8.5 7.2 5	<u>.1 6.6 50.8</u> .3 8.1 134.1	62.4 95.1	539.5 118.5 433.4 112.5	170.8 688.7 662.7 683.9	9188.4 381.9 7573.7 363.7	315.3 37.1 7 289.7 30.3	328.5 39.1 355.5 37.6	579.5 34. 595.9 34.	/ 141.9 .8 142.6	14.6
1-NG-179084 1343.4 S	130 43.947	69.696 39.6	11.3 81.3	11.4 78.6 12.	1	0.5 6	4.7 4.7 4	.6 4.9		70.2 77.2	896 322.6	8065.1 264.4	4 288.8 29.1	342.7 32.1	488.9 29.	8 143.3	14.4
1-ING-1/9085 151/.1 S 2-NG-179086 1276.7 S	131 43.948 132 43.945	09.096 62 69.696 147.2	<u>13.4</u> 52.4 24.5 110.4	10.9 92 12. 17.4 60.9 18.	b 82.7 19.3 1 14.1 16.5	0.5 9.2	4.5 4.4 2.5 9.8	4 8.4		<u>545.2</u> 69.5 450.6 118.8	895.3 319.6 193.9 400.3	7958.2 261.9 9293.7 405.0	251.2 26.5 5 368.5 37.6	<u>331.2</u> <u>30.6</u> <u>375.2</u> <u>41.1</u>	5/4.1 30. 590.9 36.	<u>2 116.7</u> 5 158.7	13.3
2-NG-179087 1471.3 S	133 43.959	69.683 13.7	10 8.1	7.4 57.5 13.	7 9.1 20.3	7.1 7.8	2.4 9.7	52.8	60.2	119 71.4		9983 374.0	5 355.4 35.4	377.1 36.4	575 3	3 145.2	18
1-C4-179444 517.7 1 1-C4-179445 290.1 2	134 43.957 134 43.957	<u>69.684</u> 18.1 <u>69.684</u> 7.2	7.4 1.5	4.4 46.2 8.	5 1.9 9 6 5.3 23.3	2.8 4.1 4.4 6.9	 1.8 6 11	<u></u> <u></u> <u>127.4</u> .1 <u>6.4</u> 20.4	57.5		318.5 188.1 1763.6 365.4	5964.3 216.3 8400.8 340.0	5 227.9 20.9 5 300.7 34.8	223.9 22.3 240.9 32.6	<u>387.2</u> 22. 553.2 34.	$\frac{1}{.5}$ $\frac{98.1}{.68}$	9.7
1-C4-179446 264.9 3	134 43.957	69.684 19.9	9.5 11.2	7 69.8 15.	5	19.1 9.8	6.1 9.5 12	.9 7.1 50	96.1		29 497.1	8603.9 370.8	<u>3 279 36</u>	248.4 39.7	519.5 37.	5 151.7	18.1
1-C4-179447 332.2 4 1-C4-179448 338.2 5	134 43.957 134 43.957	<u>69.684</u> 10.8 <u>69.684</u> 9.7	8.2 5.1 6.7 5.6	5.7 53.1 14. 5.6 86.5 12.	<u> </u>	5.5 6.5	3.2 6 4 5.5	<u></u> 		6/ 96.2	727.7 350.2 717.8 312.5	9615.5 341.4 8145.5 31	1 289.5 32.4 5 222.6 31.3	352.3 34.3 276.1 32.7	536.1 32. 563.6 32.	1 149.6 .1 139.5	16.8
1-C4-179449 352.2 6	134 43.957	69.684 4.4	6.6 15.4	6.5 72.4 10.	8 49.3 19.8	8 12 6.8	3.4 5.1 3	.7 5 44.8	60.2	48.6 50.7	921.9 328.2	7908.1 314.8	3 225.8 32.1	327.4 33.6	542.9 30.	5 142.8	14.9
1-C4-179450 327.3 7 1-C4-179451 467.1 8	<u>134</u> 43.957 134 43.957	<u>69.684</u> <u>69.684</u> 0.7	8.9 15.5	65.8 14. 7 28.5 9.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2 7.3	 18.3 9 5	 .9 5.1 37.7	92	107.2 72.1 40.3 51.9	<u>976.4</u> <u>323</u> <u>114</u> <u>245.7</u>	8922.4 335.1 19147 401.1	2 296.7 31.6 5 291.4 28.2	<u>349.5</u> 35.5 307.2 30.6	576.1 32. 340.7 27.	9 141.6 3 102.3	17
1-C4-179452 285 9	134 43.957	69.684 24.7	10.8 18.2	8.4 74.2 18.	3 20.7 15.7	5.8 7	2	.8 6.6		99.1 57.2	401.1 509.7	8524.5 355.	7 276.3 33.4	307.1 38.9	632.2 35.	2 140.1	17.9
1-C4-179453 323.1 10 1-C4-179454 273.2 11	134 43.957 134 43.957	69.684 9.6 69.684 6.3	10.1 10.4 10.5 18.1	6.9 58.7 13. 10.9 49.2 12	7 8 3.2 13.2	1.3 7.1	0.8 6	73.3 .9 10	68.4	29.2 68.7	485 327.4 899.8 357.5	8225.8 320.9 8245 353	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	305.4 35.8 303.8 39.5	491 33. 598.3 35	6 153 2 160.5	16.2
1-C4-179455 292.1 12	134 43.957	69.684	2.4	8.8 74.7 16.	7 12.7 13.6		1	.8 5.3 95.6	109.5	87.9 82.2	536.5 333.8	8695 350.4	4 229.5 32.8	339.1 36.7	544.4 36.	1 136.1	18.6
1-C4-179456 334.6 13 2-NG-179088 1372.2 8	<u>134</u> 43.957 134 43.957	69.684 21.2 69.684 20.5	11.6 0.8 12.7 78.5	7.1 46.1 1 12.1 91.8 1	5 9	27 9.2	0.2 4.8 15 6.2 6.8 5	.8 7.5 27.8 .6 8 161.7	53.3 85.9	75 59.1 328.2 76.8	489 304.1 405.9 402.2	8272.9 321.8 9477.1 392.2	3 281.3 29 2 282.7 36.3	291.9 31.3 371.6 37	536.6 31. 637.6 34	<u>3 124.7</u> 6 146	15.7
1-NG-179089 1411.1 S	135 43.952	69.685 48	10.2 26.5	9.7 57.8 9.	2	4.4 4.4	1.1 4.2			178.9 58	748.9 310.3	7810.9 250.7	7 259.8 25.1	289.4 29.2	530.9 28.	5 143.8	13.2
2-NG-179091 1355.7 S 2-NG-179096 1374 S	137 43.945 139 43.929	69.690 47.1 69.700 32.5	14.7 29.9 14 19.8	11.5 54.1 18. 11.4 70.2 13.	5 3.4 19.3 1 2.4 17.2	15.4 10.6 3.5 8.1	0.3 5 2 4.4 8.3 6	<u>.4 5.7</u> .5 7.4		205 111.7 158.3 85.5	 1596.9 488.9	8224.2 374.9 14842.7 484.4	302.7 38 5 551.4 41.8	394.2 39.9 559.4 42.3	536 39. 628.8 3	/ 160.4 8 230	18.8
				· · · · · · · · · · · · · · · · · · ·	- I	· · · · · · · · · · · · · · · · · · ·						· · · · · ·					

Image mode Image m				nuclide Gamma energy (keV)			600	Co	60Co	1	137C	ls	65Z	5 2	22N	a 54	54M	[n 81	58C	0	133	Ba	7Be		210P	b	40K	214I	Bi 32	214F	?b 99	212P	b	208TI 583.1	4
box box <th></th> <th></th> <th></th> <th>Branching Ratio</th> <th></th> <th></th> <th>0.99</th> <th>86</th> <th>0.999</th> <th>3</th> <th>0.846</th> <th>52</th> <th>0.50</th> <th>75</th> <th>0.999</th> <th>94</th> <th>0.99</th> <th>98</th> <th>0.994</th> <th>5</th> <th>0.08</th> <th>384</th> <th>0.103</th> <th></th> <th>0.04</th> <th>. (</th> <th>0.107</th> <th>0.460</th> <th>)9</th> <th>0.37</th> <th>/1</th> <th>0.43</th> <th><u> </u></th> <th>0.861</th> <th><u> </u></th>				Branching Ratio			0.99	86	0.999	3	0.846	52	0.50	75	0.999	94	0.99	98	0.994	5	0.08	384	0.103		0.04	. (0.107	0.460)9	0.37	/1	0.43	<u> </u>	0.861	<u> </u>
bbc. 300 101 4 101<	sample ma	ass(g) depth(n)	station	lat.	long.	pCi/kg	+/-	pCi/kg	+/- p	Ci/kg	+/-	pCi/kg	+/-	pCi/kg	+/- p	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg +	/- p0	'i/kg	+/- pCi/k	g +/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/- p(Ci/kg	+/-
14 100 100 100 100	1-NG-179097 13	387.1	S	140 4	3.910	69.717	29.2	10.5	16.3	6.6	48.9	10.7			0.8	4.3	12.2	6.7	3.9	4			45.3 6	8.8		70	57 243	3 321.3	26.6	344.3	30.1	497.2	28.8	144.8	13.3
1 1	2-C4-179477	315.3	1	143 4	3.942	69.711	5.7	13.5	12.9	8.8	42.8	11.7	34	22.7	1	9.8					3.7	75.7	215.2	135	94.5	558.5 8300	.9 461	9 79.6	36.2	354.9	43.8	502	39	57.5	18
141 143 245 600 14 14 240 14 240 140 240 140 140 140 140	2-C4-179478 2 2-C4-179479	314.1	2	143 4 143 4	3.942	69.711 69.711	8.6	10.1	37.8		52.1 75.4	22.1	21.5	24.9	5.7	8.6	7.1	11.6		 97	51.6 222.4	90.4	$\frac{23.4}{3.7}$ 6	9.6	73.8	417.9 8167	$\frac{.1}{2}$ 457.	7 288.2	44	324.7	44.2	618.1 597.8	38.7	223	$\frac{22.5}{23.1}$
1 C1 Proc. 202 3 (a) 204 10 (a)	2-C4-179480	288	4	143 4	3.942	69.711	13.1	12.2	4.7	8.8	46.9	19	36.5	31.3	2.3	13.3			4.4	9.2					43.9	278.2 8726	.6 51	0 132.5	38.5	137.4	38.1	594.4	43.8	114.8	21.4
Scattering MR Control MR MR MR MR MR	2-C4-179481 3	327.5	5	143 4	3.942	69.711	2.8	9.9	8.3	10.9	91.2	17	43	22.1	18.6	13.9	0.9	17.3	6.5	8.9	63.6	75	86.1 7	1.7	22.4	252.7 9166	.6 466	5 283.8 9 233.1	43	298.3	43.3	625.9	39.2	185.7	$\frac{23}{24.4}$
2 1 1 1 1 0	2-C4-179482 3 2-C4-179483 3	303.7	7	143 4	3.942	69.711	3	11.5	4.5	8.8	8.8	10.2			29.5	13.2	9.3	9.8	13	10.8	38.1	84.2	115.7 10	3.4		11682	.7 534	6 344.9	48.1	252.3	47.4	845	45	231.8	27.1
Col (1988) Bay Dial	2-C4-179484	378.3	8	143 4	3.942	69.711	1.6	9.9							3.4	9.3	7.4	8.1					246.4 8	3.6		9484	.3 433.	2 306.2	38.3	334	39.2	676.4	37.5	181.4	21.2
JAC-2008 BIA Dial Dial <	2-C4-179485 3 2-C4-179486	305.7	10	143 4	3.942	69.711 69.711	16.5	13.1	6.5	/.6 	23.9		12.3	21.2			22.1	8.4	2.9	7.4 8.2	48.9	80.7	47.8 7	8.3 3.6	17.6	499.2 10280	.5 544.	$\frac{1}{2}$ $\frac{2}{321}$	38.9 46.4	265	41 48.5	793.7 896.6	44.5	181.6	$\frac{23}{29.4}$
2000 [1900] 1800 8 (1) 3.20 3.21 5.21 1.21 1.22 1.21	2-C4-179487	367.3	11	143 4	3.942	69.711	11.1	9.2			10	9.1	13.3	26.1	10.7	13.3	4.7	10.1	12.7	9					59.2	393.7 9872	.2 449	9 282.4	42.8	357.1	40.2	720.4	38.2	172.8	22.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-NG-179100 14	409.6	S 1	143 4	3.942	69.711 69.728	36.5	13.3	0.5	9.8 15.4	75.1	17.2	141.8	25.5	6.7	9			4.5	5.7	58.2		178.9 7 265.3 9	9.9 : 7.2	56.8 1063	562.6 8796 475.6 8653	.5 369. 3 470	5 417.4 7 209.5	37.6	359.5 295.4	37.4	641.5 459	34.7	162.7 117.5	$\frac{20.2}{19.1}$
I_C I	1-C3-179458	108.4	2	144 4	3.930	69.728	45.8	13.4	29.3	16.6	71.4	19.7			9.4	11.3	15.2	12.4	9	11.7			16.9 7	9.8	723	437.5 8372	.6 501	7 272.9	48.3	233.5	47.2	601.6	51.4	142	27.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-C3-179459	118.7	3	144 4	3.930	69.728	3.7	13.4			51.5	19.8	35.3	25	21.2	13.2	24.7	10.8	9	9.2	45.1	93	257.1 11	0.3	69.9 500	334.4 9079	.7 498	9 297.8	47.7	397.5	51.8	638.3	45.8	128.7	$\frac{21.7}{24.7}$
Instruction 106 S 114 4100 0228 75 85 107 105 105 106 106 105 106 106 105 106 1	1-C3-179461	103.6	5	144 4	3.930	69.728	10.1	11.8			74.1	20.1	52.4	29.3	17.2	13.9	23.9	11.4	14.1	0.4			110	112		9027	.3 556	5 387.5	48.8	341	58.6	869.2	59.1	213.7	30.5
LCC 1984 LO LO <thlo< th=""> LO LO LO</thlo<>	1-NG-179101	1396	S	144 4	3.930	69.728	3.7	8.2	10	7	64.7	11.3	23.2	14			2.8	7.1	0.6	5.2	57.7	57.5	155 8	2.7 5	62.4	436.7 7539	.1 247.	6 293.2	25.9	279.4	29.8	512.5	29.4	132.6	13
153 3 115 453 671 155	1-C3-179418 1-C3-179419	123.7	1 2	145 4	3.920	69.731 69.731	15.1 0.9	14.2	7.8	12.3	82	25.3	46.1	28.1	7.9		5.7		25.9	7.9	25.7	99.9	207.5	1.8 93	78.8	326.3 8301	.2 482. .3 443.	$\frac{2}{4}$ 245.9	44.5 36.8	334.7	50.5 50.4	570.2	47.5	237.7	$\frac{20.6}{25.7}$
1.10.1 4 143 4 143 4 143 140 073 120 15 16 15 16	1-C3-179420	135	3	145 4	3.920	69.731	18.4	10.2	10.7	11.5	18.6	10.8			14.5	15	10.3	10	6.5	9.1	67.6	153		;	63.6	407 8629	.9 468	9 261	49.6	331.2	50.5	739	47.6	174.2	26.3
1.2.4.7970 20.56 1 1.4.2 1.6 4.1.2 1.6 1.0	1-C3-179421 1 2-NG-179102 14	121.3 425.3	4	<u> </u>	3.920	69.731 69.731	25.8	20.1	1.2	9.1	1.2	11.5	19	22.9	23	11.7		93	4	8.8	402.5	119.8	211.3 9		98.1	381.8 9820	.4 500.	6 395.1 9 264.7	45.7	344.6	46.1	808.4 681.7	33.6	194.6 144.1	$\frac{28.7}{18.8}$
2-C1-19981 1142 2 116 64.09 60.73 9.9 12 10.8 12.8 10.8 12.9 10.8 10.9 10.1 11.0 10.2 10.1 10.1 10.2 10.1 10.4 10.5 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.0 10.1 10.0	1-C4-179360	203.6	1	146 4	3.919	69.751			3.7	8	103.8	15.9	8.1	20.2	16.2	11.8	1.3	10	9.1	12.5	74.8	78.2			80.4	363.6 7559	.5 404.	4 270.6	42.3	290.6	45.3	655	45.6	131	18.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C3-179361	114.2	2	146 4	3.919	69.751	9.7	20.4	4.1	15.6	123	32.7	25.5	29	21.6	17.4	7.9	12.8	20.5	19.8	133.9	136.8	134.2 14	5.3 2	09.5	800.9 8447	.9 643.	5 367.9	52.6	301.9	62.1	505.7	55.9	247.2	$\frac{37.7}{24.6}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C3-179363	117.3	4	146 4	3.919	69.751	9.1	52.0	13.7	13.4	167.6	36.6	95.9		45.9	19.5	<u>43.9</u> 5.1	15.8			247	192.2	225 12	6.5 1	200.7	988.1 8797	.6 691	4 202.2 6 167.8	61.8	304.2	54.1	381.6	47.6	248.1	$\frac{24.0}{32.9}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C3-179364	114.6	5	146 4	3.919	69.751	5.4	14.3			119.3	31.7	98.3	51.7	20.5	13.4	13	14.8	8.7	12.1	21.1	119.8			68.9	881.7 9982	.3 682	5 278.7	58.9	391.5	71.6	755	62.1	203.3	35.9
INCLE 5 146 43919 9731 7.7 7.1 1.9 4.2 6.2 1.2 6.7 4.5 0.5 4.7 - - 300 20.2 7.9 91.42 22.4 720.0 23.5 22.5	2-C3-179365 2-C3-179366	122.2	6	146 4	3.919	69.751 69.751	25.4	24.5			119.2	24.1			29.3	18.7	7.7		44.2 8.5	16.3	39.5		34.8	3.1		9690	.6 66 .1 700.		67.8	318	59.1 67.1	691.1	58	158.7	$\frac{31}{37.3}$
Samples collicated 16.17 September 2004 2 C4.17184 200 1 2 C4.17	1-NG-179103 14	411.5	S	146 4	3.919	69.751	7.7	7.1	1.9	4.2	66.2	12.8			5.9	4.6	6.7	4.5	0.5	4.7			330.2	93	42.4	228.4 7020	.6 238.	5 285.1	26.5	322.8	30	600.8	30.8	129.4	13.3
2-0.17884 2003 147 Westyon Is 43.944 0.088 15 10 21 11.8 25.8 16.2 6.3 8.4 7.3 - 6.3 30 36.4 32.1 43.0 32.1 46.0 30.1 10.99 72.1 24.07 78.0 96.8 90.7 50.5 96.8 90.7 50.6 61.4 97.0 63.4 77.2 63.6 61.9 100.1 52.5 61.4 97.0 63.4 97.0 63.4 97.0 63.4 97.0 63.4 97.5 97.4 63.4 97.0 63.4 97.0 63.4 97.0 63.4 97.0 97.0 98.8 64.1 15.5 - - - 96.3 64.1 17.5 63.4 17.5 63.4 17.5 77.0 77.	Samples collected 1	6-17 Septemb	er 2004																																
2 147 Westport Is 43.9494 69.88 13 14.3 21.1 13.1 25.8 18.4 35.2 19.4 17.6 13.2 13.2 13.2 14.3 21.1 15.1 25.3 12.4 16.1 16.5 25.4 16.5 16.5 26.4 16.5 16.4	2-C4-171841	420.5	1	147 Westport Is 43	3.9494	69.688	15	10	21	11.8	58.1	15.4	53.6	20.1	9.3	9.3	6.2	6.3	8.4	7.3			163.3	60	66.4	383.9 7271	.2 360.	7 235.9	33.8	333.1	34.2	494.6	30.1	109.9	17.1
2 2 1 1 1 1 1 2 50 100 141 151 2 52 100 101 100 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 102 152 112 102 152 112 102 152 112 102 112 103 10	2-C4-171842	209.2	2	147 Westport Is 43	3.9494	69.688	13	14.3	21.1	13.1	23.5	18.4	35	29.4	4.7	14	17.9	13.2					87.9 9	6.8	20.7	520 9544	.7 562.	4 324.2	50	321.4	56	642.4	54.2	190.9	$\frac{28.3}{26.7}$
2-C4+171845 363. 5 147 Wesport Is 439494 69688 13 11.1 15 1- 7 62 21.3 3.1 9.3 - - 8.7 8.7 70 37.7 103.3 - <t< td=""><td>2-C4-171843 2 2-C4-171844 3</td><td>327.1</td><td>4</td><td>147 Westport Is 43</td><td>3.9494 3.9494</td><td>69.688</td><td>29.2</td><td>16.3</td><td>23.6</td><td>11.9</td><td>36.9</td><td>11.9</td><td>144.1</td><td>34</td><td>1</td><td>8.7</td><td>13.2</td><td>9.3</td><td>0.4</td><td>12</td><td>67.2</td><td>74.5</td><td></td><td></td><td></td><td> 9633</td><td>.5 475.</td><td>5 337.2</td><td>42</td><td>265.3</td><td>43.5</td><td>560.1</td><td>38.9</td><td>136.4</td><td>$\frac{20.7}{21.5}$</td></t<>	2-C4-171843 2 2-C4-171844 3	327.1	4	147 Westport Is 43	3.9494 3.9494	69.688	29.2	16.3	23.6	11.9	36.9	11.9	144.1	34	1	8.7	13.2	9.3	0.4	12	67.2	74.5				9633	.5 475.	5 337.2	42	265.3	43.5	560.1	38.9	136.4	$\frac{20.7}{21.5}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-171845	363.4	5	147 Westport Is 43	8.9494	69.688	14.1	15			71.9	17.7	6.2	21.3	3.1	9.3			8.7	8.1	86	70.9				9348	.5 444.	4 356	39.6	436.3	40.3	555.4	40	172.7	20.8
2-C+17188 348. 8 147 Wesporth 43.9494 69.688 6.6 10 31.1 12.6 159.6 99.1 82.2 79.5 1001076 48.0 24.1 34.4 28.0 20.2 22.42 22.42 22.42 22.42 22.42 22.4 29.5 52.7 10 95.6 34.0 90.4 12.9 34.5 90.4 12.9 1007.6 48.0 90.3 33.3 36.4 585 33.3 36.4 585 33.3 14.2 14.2 14.9<	2-C4-171846 2-C4-171847	354.8	7	147 Westport Is 43	3.9494 3.9494	69.688 69.688	4.1	9.6	15.6	9.4	120	21.4			5.5	11.2	17.1	8.1	9.7	7.5	298	91.8		:	58.4	405.8 103	.4 448. 38 477.	7 221.4 5 314.5	38.5	339.7	41.7	751.7	38.5	184.0	$\frac{23}{20.6}$
2-C4-171849 340 9 147 Wesports 439.94 69.688 7.9 12.5 9.4 12.28 20.8 199 38.1 9.6 11.3 7.5 10.90.6 249.2 22.4 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70 199.6 24.2 70.1 79.6 32.9 72.4 70 199.6 24.2 70.1 70.9 70.0 70.1 70.1 199.6 24.2 70.1 70.9 70.0 70.3 70.7 70.9 70.0 70.3 70.7 70.9 70.3 70.7 70.0 70.3 70.7 70.0 70.3 70.7 70.0 70.3 70.7 70.0 70.3 70.7 70.0 70.3	2-C4-171848	348.1	8	147 Westport Is 43	8.9494	69.688			8.5	9.9	101.1	18.9	6.5	17.3	6.6	10	31.1	12.6			159.6	99.1	82.2 7	9.5		10257	.3 486.	9 247.1	35.4	298.8	44.3	830	40.2	224.2	24.2
2 C4-171876 2327 1 148 Clarks Cv 13228 69 5635 16 10 93 146 25 68 7 63 04 55 552 78 23274 504 972 201 8897 254 105 105 88 -1 633 127 504 63272 801 835 2454 114 544 105 116 99 143 100 88 -1 639 112 76 3122 503 12274 5044 2054 1175 114 -1 184 112 76 3124 632 352 127 102 3327 10247 304 322 353 353 353 353 352 353 352 1175 194 1175 194 1175 194 123 103 352 353 353 352 3532 <	2-C4-171849 2-NG-179488 13	340 387.5	9 S	147 Westport Is 43	3.9494 3.9494	69.688 69.688	5.9 74.8	13.9 19.6	15.5 44.1	9.4	122.8	20.8	199	38.1	9.6 15	11.3	8.3	8.2		6.2	231.5	92.9	25.2 445.2	70	99.6 44.7	249.3 10807 479.7 7661	.6 48 5 349	9 313.2 5 308.9	44.3	290.3	45.6 36.4	710 585	44.7	179.9 145.2	$\frac{23.1}{17.3}$
2-C4-171877 393.9 2 148 Clarks CV 43.928 09:5635 23.4 16 - 6.2 8.8 - 50.1 18.3 177 306.6 13227.4 504.9 376.9 41.6 42.45 41.4 54.4 54.4 54.4 54.4 54.4 54.4 54.5 44.6 148 20.4 148 Clarks CV 43.928 69.5635 13.3 9.4 17.4 8.1 10.5 12.7 - - 45.8 89 10.2 10.4 - - 10.8 8.2 23.1 17.4 10.5 8.2 23.1 17.4 10.5 8.2 23.1 8.7 10 5.3 8.1 17.4 12.3 99.6 32.8 56.1 102.3 33.7 1192.7 40.0 80.5 35.8 35.1 30.1 30.4 40.4 35.8 30.1 30.4 40.4 35.8 30.1 30.4 40.4 36.8 32.1 30.1 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 <	2-C4-171876	526.7	1	148 Clarks Cv 4	3.928	69.5635	4.6	7.3			36.1	11.9	9.3	14.6	2.5	6.8	7	6.3	0.4	5.5	35.2	78.9	2.3 6	3.9		9734	.3 388	5 245.6	29.8	272.2	30.1	389.7	25.4	109.7	14.8
2 - 0 + 11050 $3 - 1105$ 1105	2-C4-171877 3 2-C4-171878 3	393.9 351.1	2	148 Clarks Cv 4	3.928	69.5635	23.4	16 11.4			6.2	8.4 0			11.6	9.9	14.3	10	10	8.8	42 0		59.1 8 31.4 6	3.3	177	369.6 13227	.4 504. 7 481	9 376.9 3 405.5	41.6	424.5	41.4	544 315 2	34.6	145.8	20.5 19 4
2-2-4-171880 411.8 5 148 Clarks CV 43.928 69.5635 2.2 16.3 7.4 7.7 10.9 9.3 8.1 1 7.4 12.7 12.6 37.3 37.3 17.9 $ -$ <t< td=""><td>2-C4-171878</td><td>430.5</td><td>4</td><td>148 Clarks Cv 4</td><td>3.928</td><td>69.5635</td><td>13.3</td><td>9.4</td><td>17.4</td><td>8.1</td><td>10.5</td><td>12.7</td><td></td><td></td><td>4.5</td><td>8.9</td><td>10.5</td><td>10.4</td><td></td><td></td><td></td><td></td><td>88.3 5</td><td>6.2</td><td>.02.3</td><td>332.7 11925</td><td>.7 450</td><td>3 282</td><td>36.5</td><td>339.5</td><td>37.7</td><td>463.9</td><td>31</td><td>103.3</td><td>17.6</td></t<>	2-C4-171878	430.5	4	148 Clarks Cv 4	3.928	69.5635	13.3	9.4	17.4	8.1	10.5	12.7			4.5	8.9	10.5	10.4					88.3 5	6.2	.02.3	332.7 11925	.7 450	3 282	36.5	339.5	37.7	463.9	31	103.3	17.6
$\frac{1}{2} - (4 - 17183) + \frac{1}{3} - $	2-C4-171880 4	411.8	5	148 Clarks Cv 4	3.928	69.5635	32.2	16.3	7.4	7.7	10.9	9.3	8.2	23.1	8.7	10	5.3	8.1	1	7.4	213.7	99.6	32.8 5	6.1	276.2	347.9 130)6 482.	5 353.8	35.1	360.1	40.4	508.7	32.4	122.6	15.9
2 C4-171883 460.6 8 148 Clarks Cv 43.928 95.653 8.3 11.3 0.7 7 19.3 8.6 7.3 18.5 5 8.1 12.5 8.5 6.9 6.5 45.2 8.6	2-C4-171881 2 2-C4-171882 3	385.1	7	148 Clarks CV 4	3.928	69.5635	15.6	13.1	3.5	8.5	26.9	9.8	16.1	21	12.5	8.9	9	7.7	2.7	7.9		62.4	105.1 8	4.4 4.7	04.8	269.6 12764	.8 420.	2 330.3 3 359.4	40.4	352.8	45.3	321.7	29.3	134.2	$\frac{17.1}{22.6}$
2-C4-1/1884 485.4 9 148 Clarks CV 43.928 69.5655 11.6 10.7 5 20.4 10.1 60.4 29.2 110438 20.6 33.1 29.6 34.8 29.6 14.4 19.3 20.7 25.5 50.3 54.2 20.7 25.5 50.3 54.2 20.7 25.5 50.3 54.2 20.7 25.5	2-C4-171883	460.6	8	148 Clarks Cv 4	3.928	69.5635	8.3	11.3	0.7	7	19.3	8.6	7.3	18.5	5	8.1	12.5	8.5	6.9	6.5	45.2	86				11033	.5 429	9 301.2	33.7	380.6	35	502.7	30.2	134.3	17.2
2-C4-171831 401.4 1 149 Robin Hood CV 43.8222 69.7486 15 12.9 1.7 7.7 55.4 12.8 6.5 4 10.4 1.1 6.8 59.6 72.5 55.5 58.4 207.2 25.5 9033.5 422.4 291.8 31.1 292.6 37 448.2 32.1 132.9 18.5 2-C4-171831 401.4 1 149 Robin Hood CV 43.8222 69.7486 15 12.9 1.7 7.7 55.4 12.8 141.2 28.6 5.4 10.4 1.1 6.8 59.6 72.5 55.5 58.4 207.2 255.5 9033.5 422.4 291.8 31.1 292.6 37 448.2 32.1 132.9 18.5 2.2 2.4 141.2 28.6 5.4 10.4 - 1.1 6.8 59.6 72.5 55.5 58.4 207.2 255.5 9033.5 422.4 291.8 31.1 292.6 37 448.2 32.1 132.9 18.5 14.5 16.6 <t< td=""><td>2-C4-171884 4 2-NG-179492 17</td><td>485.4 748.9</td><td>9 S</td><td>148 Clarks Cv 4</td><td>3.928</td><td>69.5635 69.5635</td><td></td><td>10.7</td><td>5 12.1</td><td>6.5 7.8</td><td>20.4</td><td>10.1</td><td>60.4</td><td>29.2</td><td></td><td></td><td>6.2</td><td> 8.5</td><td></td><td></td><td></td><td></td><td>133.2 9</td><td></td><td></td><td> 11043</td><td>.9 404. 6 371</td><td>9 296.6 7 309.4</td><td>33</td><td>319.4</td><td>33.9</td><td>531.8</td><td>29.6</td><td>$\frac{144.3}{146.4}$</td><td>$\frac{19.3}{15.9}$</td></t<>	2-C4-171884 4 2-NG-179492 17	485.4 748.9	9 S	148 Clarks Cv 4	3.928	69.5635 69.5635		10.7	5 12.1	6.5 7.8	20.4	10.1	60.4	29.2			6.2	8.5					133.2 9			11043	.9 404. 6 371	9 296.6 7 309.4	33	319.4	33.9	531.8	29.6	$\frac{144.3}{146.4}$	$\frac{19.3}{15.9}$
2-C4-171831 401.4 1 149 Robin Hood Cv 43.8222 69.7486 15 12.9 1.7 7.7 55.4 12.8 141.2 28.6 5.4 10.4 -1 1.6 8 59.6 72.5 55 58.4 207.2 25.5 9033.5 422.4 291.8 31.1 292.6 37 448.2 32.1 132.9 18.5 2-C4-171832 294.5 2 149 Robin Hood Cv 43.8222 69.7486 4.9 11.6 3.8 11.8 87.5 18.1 107.2 38.3 6.6 12.1 162 11.8 6.1 8.7 144.7 127.7 4.2 72 1233.3 445.2 10316.2 523.1 412.2 47.6 313.6 46.5 612.9 40.9 186.6 12.2 2.7 8.4 8.5 106.9 77.5 87 962.1 509.4 1096.3 509.9 318.7 43.4 55.6 38.5 149.4 22.8 2-C4-171834 316.5 4 149 Robin Hood Cv 43.8222 69.7486	2-C4-171831	401.4	1	149 Robin Hood Cv 43	3.8222	69.7486	15	12.9	1.7	7.7	55.4	12.8	141.2	28.6	5.4	10.4			1.1	6.8	59.6	72.5	55 5	8.4	207.2	255.5 9033	.5 422.	4 291.8	31.1	292.6	37	448.2	32.1	132.9	18.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-C4-171831 4 2-C4-171832 4	401.4	1	149 Robin Hood Cv 43	8.8222	69.7486	15	12.9	1.7	7.7	55.4	12.8	141.2	28.6	5.4	10.4			1.1	6.8	59.6	72.5	55 5	8.4	207.2	255.5 9033	.5 422.	4 291.8	31.1	292.6	37	448.2 612.0	32.1	132.9	$\frac{18.5}{22.2}$
2-C4-171834 316.5 4 149 Robin Hood Cv 43.822 69.7486 23.6 15 61.4 16.6 116.7 30.5 10.5 12.2 2.7 8.4 8.5 106.9 77.5 87 962.1 509.4 10963.8 509.9 318.9 40.9 335.1 43.4 55.6 38.5 149.4 22.8 2-C4-171835 369.7 5 149 Robin Hood Cv 43.822 69.7486 3.3 9.8 4.6 13.2 60.7 16.6 21.3 20 35.3 13.1 1.2 7.5 357 115.3 10567.6 469.7 280.2 37.9 258 32.4 55.4 35.4 15.9 0.3 20 35.3 13.1 1.2 20.2 161.8 10567.6 469.7 280.2 37.9 258 32.3 55.4 35.3 16.9 24.5 24.5 24.5 24.5 11.3 13.1 13.2 20.2 161.8	2-C4-171833 3	311.9	3	149 Robin Hood Cv 43	3.8222	69.7486	4.9		2.2	6.4	72.2	17.7	79.5	<u>39.3</u>					0.1	11.9	42.1	90.3	125.8 9	4.4		10114	.1 500.	8 <u>302.5</u>	44.8	355.5	45.4	598.9	38.7	102.6	18.5
2-C4-171833 309.7 3 149 Koom Hood CV 43.8222 09.7480 5.3 9.8 4.0 15.2 00.7 16.0 21.3 20 55.7 15.3 1.2 - - 55.7 15.3 - - 55.7 15.3 - - 55.7 15.3 - - 55.7 15.3 - - 55.7 15.3 1.1 1.2 7.0 - - 55.7 15.3 1.1 1.2 7.0 - - - - - - 1056.6 469.7 280.2 37.9 258 35.4 15.1 1.2 7.0 - - - - - - - - - - - - - - 1056.6 368.6 53 32.4 55.4 35.3 13.1 13.2 20.2 161.8 - - - - - - - - - - - - - 10701.2 54.5 33.6 53.3 32.4 15.3 16.6 2	2-C4-171834 3	316.5	4	149 Robin Hood Cv 43	3.8222	69.7486			23.6	15	61.4	16.6	116.7	30.5			10.5	12.2	2.7	8.4	8.5	106.9	77.5	87	62.1	509.4 10963	.8 509.	9 318.9	40.9	335.1	43.4	555.6	38.5	149.4	22.8
2-C4-171837 354.1 7 149 Robin Hood Cv 43.8222 69.7486 4.8 9.7 43.9 13.2 130.6 33.5 35.3 13.9 13.7 8.3 11356.2 492.4 473.1 43.8 300.9 42.8 729.8 38 168.7 22.7 2-C4-171838 381.6 8 149 Robin Hood Cv 43.8222 69.7486 3.2 7.3 3.6 6.3 8.6 7.2 62 24.9 2.4 7 54.4 10.6 21.9 10.6 45 47.7 71.1 322.3 3683.7 281.1 141.5 25.8 77.1 32.5 281 26.4 55 12.2 2-C4-171839 368.6 9 149 Robin Hood Cv 43.8222 69.7486 20.4 12 1.8 8.7 5 8.9 143.8 42.3 6.2 10.1 33.1 11.4 25.1 87.5 143.7 83 29.9 548.8 10759 470 371.7	2-C4-1/1835 2 2-C4-171836 2	290.9	5 6	149 Robin Hood Cv 43	3.8222 3.8222	69.7486	<u>5.3</u> 6.2	9.8 11.9	4.6	10.5	72.9	10.0	15.5	31.7	25.8	13.1	1.2	11.3	13.1	13.2	220.2	161.8				1056/	.0 469.	6 338.6	57.9	258 324.4	52.3 50.3	574.5	43.5	155.9	$\frac{20.3}{24.5}$
2-C4-171838 381.6 8 149 Robin Hood Cv 43.8222 69.7486 3.2 7.3 3.6 6.3 8.6 7.2 62 24.9 2.4 7 54.4 10.6 21.9 10.6 45 47.7 71.1 322.3 368.7 281.1 141.5 25.8 77.1 32.5 281 26.4 55 12.2 2-C4-171839 368.6 9 149 Robin Hood Cv 43.8222 69.7486 20.4 12 1.8 8.7 5 8.9 143.8 42.3 6.2 10.1 33.1 11.4 25.1 87.5 143.7 83 29.9 548.8 10759 470 371.7 43.4 506.6 46.8 798.1 39.3 230.1 22.5	2-C4-171837	354.1	7	149 Robin Hood Cv 43	3.8222	69.7486			4.8	9.7	43.9	13.2	130.6	33.5	35.3	13.9			13.7	8.3			55.4 9	9.9		11356	.2 492	4 473.1	43.8	300.9	42.8	729.8	38	168.7	22.7
	2-C4-171838 3 2-C4-171839	381.6 368.6	8	149 Robin Hood Cv 43 149 Robin Hood Cv 43	5.8222 5.8222	69.7486 69.7486	3.2 20.4	7.3	3.6	6.3 8.7	8.6	7.2	62 143.8	24.9 42.3	2.4 6.2	7	<u>54.4</u> 33.1	10.6 11.4	21.9	10.6	25.1	87.5	45 4 143.7	83	/1.1 29.9	322.3 3683 548.8 107	.7 281. 59 47	1 141.5 0 371.7	25.8 43.4	7.1 506.6	32.5 46.8	281 798.1	<u>26.4</u> 39.3	230.1	$\frac{12.2}{22.5}$
			nuclide		600	Co	60C	0	137Cs	65Zn		22Na	54N	1n	58C	0	133B	la	7B	e	210	Pb	40	K	214	Bi	214	Pb	212	Pb	2087	ГІ			
-------------	---------	-----------	-------------------------------	-----------------	--------	------	--------	------	------------	---------	-------	------------	--------	------	--------	------	--------	------	--------	------	--------	-------	---------	-------	--------	------	--------	-------	--------	------	--------	------			
			Gamma energy (keV)		1173	.23	1332.	51	661.62	1115.52	2	1274.54	834.	81	810.7	'5	383.	7	477.	56	46.	52	1460	0.75	609.	.32	351	.99	238	.63	583.	14			
			Branching Ratio		0.99	86	0.999	98	0.8462	0.5075	5	0.9994	0.99	98	0.994	5	0.088	34	0.10)3	0.0)4	0.1	.07	0.46	609	0.3	71	0.4	31	0.86	51			
sample	mass(g)	depth(in)	station	lat. long.	pCi/kg	+/-	pCi/kg	+/-	pCi/kg +/-	pCi/kg	+/- p	oCi/kg +/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	, +/-	pCi/kg	+/-	pCi/kg	+/-			
2-C4-171840	347.4	10	149 Robin Hood Cv	43.8222 69.7486	6.9	9.9	20.6	12.2	15.9 10.2	129.8	39.5		12.5	13.1	3	11.4	13.3	76.7	84.7	68.1	454.1	532.7	11315.8	502.7	468.3	44.7	520.7	46.5	820.4	42.1	237.5	24.1			
2-NG-179493	1405.4	S	149 Robin Hood Cv	43.8222 69.7486	5 13.9	9			51.7 15.7	14.2	19.3	4.5 8.3			7.3	7.2	152.7	80	166.7	65.3			6972.2	332.9	305	32.5	266.5	34.1	433.8	33	109.7	15.7			
			average of control samples:		12.3	12.5	9.9	10.2	72.4 17.0	61.5 2	28.7	10.5 11.1	12.3	10.5	6.9	9.2	97.7	94.0	99.9	81.8	355.6	448.5	10179.1	481.2	354.8	43.1	389.0	44.5	681.5	39.2	183.0	22.5			
		a	verage of samples near plant:		19.2	12.4	17.8	10.4	73.2 16.5	36.1 2	24.3	10.4 10.6	9.2	9.7	7.6	8.8	87.8	95.7	154.9	89.3	551.3	421.6	9441.5	440.4	301.2	40.2	330.8	43.1	623.7	40.8	166.1	21.4			

				30 y	
	Station	Bottom	Top of	Separation	pCi/Kg
Location	No.	Of Peak 1	Peak 2	of Peaks	Max
Long Creek		1"	6"	5"	950
Bailey Cove	2	1"	11"	10"	250
Wiscasset		3"	9"	6"	92
Chewonki Camp		3"	6"	3"	135
Bailey Cove Outfall	8	6"	13"	7"	175
Diffuser	34	1"	7"	6"	17
Westport Island	38	2"	7"	5"	41
Eaton farm Point	44	1"	5"	4"	100
	50	2"	10"	8"	120
South Oak Is	59	1"	3"	2"	115
South Oak Is	60	5"	9"	4"	20
	61	Flat			10
	62	1"	8"	7"	24
Long Ledge	63	1"	5"	4"	60
Long Ledge	64	1"	7"	6"	80
	65	1"	6"	5"	110
	67	2"	9"	7"	155
Foxbird Is	68	2"	7"	5"	252
	73	1"	12"	11"	175
Bailey Cove	74	1"	10"	9"	250
Upper Bailey Cove	77	1"	12"	11"	225
South Bailey Cove	85	2"	6"	4"	70
North Bailey Cove	99	1"	11"	10"	155
Eaton Farm Bailey Cove	101	2"	10"	8"	150
Top of Bailey Cove	105	1"	7"	6"	100
	108	1"	11"	8"	130
	113	2"	13"	11"	160
	118	2"	11"	9"	35
	143	2"	11"	6"	90
Oak Island Murphy Corner	144	2"	5"	3"	110
Oak Island Murphy Corner	145	1"	3'	2"	110
	146	1"	7"	6"	165
Taunton Bay	Vc14	1cm	30cm	29cm	60
Taunton Bay	Vc15	1cm	25cm	24cm	100
	Vc23	1cm	25cm	24cm	250

Table 5-2.Summary of ¹³⁷Cs peaks observed in cores.

Station	Diameter.	Depth	⁶⁰ Co, 1173 keV	⁶⁰ Co, 1332 keV	¹³⁷ Cs
	in.	in.	pCi	pCi	pCi
9apr04 batch:			•		
Chewonki Camp	4	6	11	15	232
Wiscasset	4	11	33	38	294
Long Creek	4	12	36	47	1297
Barry Cove	4	15	10	21	86
1jun04 batch					
Pottle cove	4	12	37	24	329
Sasanoa	4	13	27	46	720
Eddy	4	12	46	45	349
6-9iulv04 batch					
2	4	11	26	14	519
8-1	4	15	50	43	538
25	4	12	37	21	91
34	3	9	7	7	11
38	3	7	19	8	18
44	3	9	12	10	55
50	4	11	27	32	279
50	т	11	21	52	21)
-5aug04 batch					
-5aug04 baten 50	3	8	10	8	24
53	3	0	8	13	24
61	3	5	7	15	5
62	3	3	/	9	11
62	2	0	8	7	26
03	2	10	<u> </u>	11	30
64	3	10	4	0	43
03	2	9	9	0	39
00-1	3	9	12	10	<u> </u>
67	3	9	12	3	207
08	4	9	30	37	307
/3	4	11	30	39	407
/4	4	11	34	19	555
//	4	12	35	33	579
85	3	6	/	6	46
99	4	11	31	27	460
101	4	10	4/	21	437
105	4	12	21	59	18/
108	4	9	41	58	225
113	4	13	48	28	590
117	4	9	49	40	144
118	4	12	/3	18	67
134	4	13	44	34	263
143	4	- 11	27	26	135
144	3	5	8	9	47
145	3	4	8	4	28
146	4	7	5	3	100
6-17sep04 batch					
147	4	9	36	39	225
148	4	9	49	18	74
149	4	10	28	26	182

Table 5-3. Total ⁶⁰Co and ¹³⁷Cs activity contained in cores

Table 5-4.Biota gamma scan results

		nucl	. 600	Co	600	Co	137	'Cs 657	Zn	221	Na	54N	/In	580	Co	133	Ba	7B	le	210	Pb	40K	21	4Bi	214Pb	21	2Pb	208T1
		E(keV)) 1173	.23	1332	.51	661	.62 1115	5.52	1274	.54	834.	.81	810	.75	383	3.7	477.	.56	46.	52	1460.75	609	9.32	351.99	23	3.63	583.14
		%	0.99	86	0.99	98	0.84	162 0.50)75	0.99	94	0.99	98	0.99	945	0.08	884	0.10	03	0.0)4	0.107	0.4	609	0.371	0.4	431	0.861
sample	mass(g) species	Location	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	; +/- pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	+/-	pCi/kg	s +/- 1	pCi/kg	+/-	pCi/kg	+/-	pCi/kg +/	- pCi/k	g +/- pC	i/kg +/	- pCi/k	g +/-	pCi/kg +/-
2-NG-171993	343.5 clam shells	Little Oak Is.	6	7			11.7	10 31.8	16.8	13.8	6.4			8	6.7	3.6	62.9	83.7	66	364	676	2196.2 190	98.6	20.4 72	.8 25.	5 204	27.2	63.6 13.8
2-NG-172000	829.8 mussels	Little Oak Is.	8.5	4.7	5	3.4	5.7	4.3 4.7	5.8			1.3	2.7					18.6	28.8	375	288	1243.2 89.4	14.3	7.9 9	.5 10.	3 30.1	5.9	5.7 3.6
2-NG-171998	280.9 rock weed	Little Oak Is.	13.7	11.8	12.3	14.5	7.4	12.2 97.2	30.8	18	15.7			2.6	9		4	44.3	146	1282	884	15091 455	112	30.3 66	.8 32.	6 25.4	26.1	37.2 15.5
2-NG-171997	472.3 fish tissue	Back River	5.6	7	2.4	5	16.8	7.6 8.8	16	10.4	8.1	0.2	4.9	5.7	6.8					609	324	5325.4 215	10.3	12.9 57	24.	6 53.3	20.1	28 10.7
2-NG-171989	999.2 clam tissue	Little Oak Is.	7.1	4.1				6.1	5.3	3.1	2.9	8.4	3.3	3.9	4.4		'	72.1	32	146	237	1543.6 84	10.1	8.9 3	.7 5.	4 42.4	9.9	12.5 5.5
2-NG-45201	636.2 lobster		1.9	3.9	6.1	5	1	4.1 46.5	15.3	3.2	3.7	7.3	3.8			9.7	34	18.9	38			3236.7 143	31.4	12.5 40	.6 14.	1 17.5	11	8.8 5.2
		average	7.1	6.4	6.5	7.0	8.5	7.6 32.5	15.0	9.7	7.4	4.3	3.7	5.1	6.7	6.7	48.5	47.5	62.2	555.2	481.8	4772.7 196.0	0 46.1	15.5 41	.7 18.	8 62.2	16.7	26.0 9.1
2-NG-179200	736.3 control mussels	Darling Center	3.4	3.3			2.5	4.3 1.5	8.2	3.9	3.8			2.1	4			49.5	36.8			1804.5 108	51	11.8 32	.9 16	48.5	13.4	15.1 3.9
2-NG-0100	237.6 control sea scallops	Darling Center	5.4	11.9	30.1	10		26.9	18.8			13.3	9.6	14	12.5	25.9	104	121	117	2528	1103	3889.3 292	85.7	31.1 63	.5 47.	6 108	27.9	49.4 17.1
2-NG-0101	797.1 control oysters	Darling Center	1.7	2.9	2.3	3.2	0.6	3.6 20.4	8.3	3.6	2.7					29.4	43.6	44.7	29.9			1178.3 83.9	17	9.5 21	.6 12.	9 22.7	5.5	7.8 4
2-NG-0102	883.5 control ocean quahogs	Darling Center					5.5	3.7 5.2	7	3.6	2.6	1.8	2.9	2.4	3.6	14.2	35.4	46.6	34.8	358	264	1523.7 90.6	25.5	8.9 22	.3 13	44.8	10.5	18 4.8
2-NG-0103	669.2 control horse mussels	Darling Center	4.3	4.4	4.8	4.3	14.4	5.5 3.9	5.9	1.1	2.5	4.5	4.2					83.7	40.9	526	356	1328.2 104	64.2	13.7 63	4 18.	1 27.5	10.8	9.2 6
2-NG-045402	673 control blue mussels	South Portland	2.9	3.6	3.8	4	8.1	6.2 21.9	10.7	3.3	3.6			1.3	3.4	15.6	73	1.9	49.5	393	257	2427.9 122	53.6	16.5 83	.7 15.	3 58.6	12.3	14 4.9
2-NG-045401	459.6 control Rockweed	South Portland	30.6	12.5	12.4	6.3	10.1	10.8 2.4	19.6	0.2	8.2	5.5	6.3			2.7	76.4	122	66	563	375	6075.8 235	60.8	16.6 32	.5 19.	2 69	20.6	5.1 9.7
		control average	8.1	6.4	10.7	5.6	6.9	5.7 11.7	11.2	2.6	3.9	6.3	5.8	5.0	5.9	17.6	66.5	67.0	53.5	873.5	470.9	2604.0 147.8	8 51.1	15.4 45	.7 20.	3 54.2	14.4	16.9 7.2

	Cs- ¹³⁷ Low	Cs- ¹³⁷ High	Co- ⁶⁰ Low	Co- ⁶⁰ High
2004	2.9	287.2	0.5	168.7
Pre	350	800	<30	<30
Post	500	1000	<30	2,420

Table 5-5.	Comparison	with Pre- and	Post-operational	study
			1	

Table 3-0. Results of the Hard to Detect Nuclide	Table 5-6.	Results	of the	Hard to	Detect	Nuclides
--	------------	---------	--------	---------	--------	-----------------

Sample	⁶³ Ni (pCi/g)	⁵⁵ Fe (pCi/g)	⁹⁰ Sr (pCi/g)	²³⁸ Pu (pCi/g)	²³⁹ Pu (pCi/g)
Clams	-1.2×10^{-1} ± 3.2 x 10 ⁻¹	-1.7×10^{-1} ± 2.0 x 10 ⁻¹	$-1 \times 10^{0} \pm 1.1 \times 10^{0}$	$0 \pm 1.5 \text{ x } 10^{-5}$	8.2×10^{-4} ± 8.2 x 10 ⁻⁴
Clamshell	$-1.6 \ge 10^{0}$ $\pm 2 \ge 10^{0}$	$\begin{array}{c} -2.6 \text{ x } 10^{0} \\ \pm 1.2 \text{ x } 10^{0} \end{array}$	-5×10^{-1} ± 1.2 x 10 ⁰	-3.2 x 10 ⁻⁴ ± 1.9 x 10 ⁻⁴	$5.1 \text{ x } 10^{-4} \\ \pm 8.5 \text{ x } 10^{-4}$
Mussels	$9.2 \text{ x } 10^{-1} \\ \pm 9.3 \text{ x } 10^{-1}$	-5.2 x 10 ⁻¹ 5.5 x 10 ⁻¹	$5.0 \text{ x } 10^{-1} \\ \pm 1.2 \text{ x } 10^{0}$	-6.1 x 10 ⁻⁴ ± 2.5 x 10 ⁻⁴	$5.0 \text{ x } 10^{-5} \\ \pm 8.3 \text{ x } 10^{-4}$
Mussel shell	$\begin{array}{c} 1.5 \text{ x } 10^{0} \\ \pm 1.2 \text{ x } 10^{0} \end{array}$	-6.0 x 10 ⁻² ± 8.1 x 10 ⁻¹	$-1.2 \times 10^{0} \pm 1.2 \times 10^{0}$	$0 \pm 1.1 \text{ x } 10^{-5}$	-3.3 x 10 ⁻⁴ ± 1.7 x 10 ⁻⁴
Lobster	$\begin{array}{c} 2.0 \text{ x } 10^{-1} \\ \pm 1.2 \text{ x } 10^{0} \end{array}$	$-6 \ge 10^{-2}$ $\pm 8.2 \ge 10^{-1}$	$\begin{array}{c} 1.25 \text{ x } 10^{0} \\ \pm \ 7.5 \text{ x } 10^{-1} \end{array}$	$0 \pm 5.2 \text{ x } 10^{-6}$	$0 \pm 5.2 \text{ x } 10^{-6}$
Fish	9.0×10^{-2} ± 3.8 x 10 ⁻¹	$\begin{array}{c} -2.3 \text{ x } 10^{-1} \\ \pm 2.6 \text{ x } 10^{-1} \end{array}$	9.3 x 10^{-1} ± 4.0 x 10^{-1}	-1.28×10^{-4} ± 5.7 x 10 ⁻⁵	$0 \pm 3.5 \text{ x } 10^{-6}$
Rockweed	$\begin{array}{c} -6.0 \text{ x } 10^{-1} \\ \pm 2 \text{ x } 10^{0} \end{array}$	$\begin{array}{c} -1.1 \text{ x } 10^{0} \\ \pm 1.2 \text{ x } 10^{0} \end{array}$	$\begin{array}{c} -1.0 \ x \ 10^{-1} \\ \pm \ 1.3 \ x \ 10^{0} \end{array}$	$0 \pm 1.6 \text{ x } 10^{-5}$	-2.2 x 10 ⁻⁴ ± 1.6 x 10 ⁻⁴
Sediment	$\begin{array}{c} 3.9 \text{ x } 10^{0} \\ \pm 2.2 \text{ x } 10^{0} \end{array}$	$-3 \times 10^{-1} \pm 1.4 \times 10^{0}$	$5.0 \text{ x } 10^{-1} \\ \pm 1.1 \text{ x } 10^{0}$	$7.2 \text{ x } 10^{-4} \\ \pm 7.2 \text{ x } 10^{-4}$	$9.3 \text{ x } 10^{-3} \\ \pm 2.6 \text{ x } 10^{-3}$

6. HOT PARTICLE SEARCH RESULTS

University of Maine researchers conducted a search for hot particles on three occasions, July 7, August 2, and August 18, around the site of the Maine Yankee Nuclear Power Plant. The goal of the search was to find any area on the tidal flat which measured three times normal background. The searches were conducted using a High Pressure Ion Chamber (HPIC) connected to a laptop computer. Each search was conducted at an extreme low tide so as to allow the investigators the ability to walk as far away from the shore into the tidal flat as possible. The HPIC records a dose in microrems/hour. At the same time, position was recorded using GPS. The HPIC was set to warn researchers if a measurement three times larger than background was detected by emitting a series of four beeps. Therefore, a background was initially established at a location well away from the power plant. In each case, the background was approximately 10 to 12 microrems/hour as expected. However, if a measurement over three times these values was noted, the researchers would mark the site with a flag, record the GPS location, notify Maine Yankee personnel, and return with a sodium iodide detector to perform a gamma ray analysis of the location. Results from the sodium iodide detector would provide a spectrum allowing a determination of the particular radioisotopes involved. The HPIC was loaded onto a sled and dragged over the tidal flat during low tide. The HPIC would record results for 30 seconds, then rest for 30 seconds. After recording for 30 seconds, the HPIC emitted a single beep at which time the researchers would move the sled for 30 seconds to the next location.

Results are shown in Figures 6-1 through 6-3. No measurement over three times background was seen. However, some variation was noted. The variation, from approximately 11 microrems/hour to approximately 5 microrems/hour, is most likely due to low sediment concentrations of nuclides and some gamma ray shielding by the ocean. As the researchers dragged the sled out away from the shore, the HPIC would see gamma rays from the immediate tidal flat, but not from the shore or from the soil underneath water. As a result of the low sediment concentrations and water shielding the HPIC from a large section of area, the values measured were reduced to very low values. These results are in agreement with a pre- and post-operational study of the area completed in 1976. In this report, total dose rates ranging from 8.89 to 14.45 microrems/hour (Technical Note 76-3). Figure 6-4 shows the three tracks taken around the power plant with the HPIC results color coded to show the variation. As can be seen from the figure, the three tracks were chosen to bracket the plant and to pick up any hot particles remaining in the area of the outfall and the diffuser. As stated above, no "hot" areas were seen.

Figure 6-1. Hot Particle Scan, 7 July 2004

Figure 6-2. Hot Particle Scan, 2 August 2004

Figure 6-3. Hot Particle Scan, 18 August 2004

Figure 6-4. Hot Particle Scan Map

7 MARINE SAMPLE DOSIMETRY

7.1 MARINE SAMPLING DOSE ASSESSMENT

7.1.1 Purpose of the Dose Assessment Document

The purpose of this dose assessment is to support the study by identifying current and future uses of the marine environment around Maine Yankee and the associated dose pathways, by presenting the basis for the selection of marine biota for sampling and by establishing the framework to evaluate the results of the sediment and biota sample analysis. Specifically, the following objectives are accomplished in this dose assessment:

- 1. Identify the dose pathways associated with the intertidal zone considering both current and potential future uses. Maine Yankee will work with the Friends of the Coast to reach agreement on these dose pathways.
- 2. Develop a dose assessment framework to calculate an incremental intertidal zone dose from the sampling (characterization) results. Maine Yankee will use this framework to compare the incremental intertidal zone dose to the limiting "resident farmer" dose calculations in the License Termination Plan.
- 3. Present the dose basis for the identification of flora and fauna in the intertidal zone that may reasonably be considered contributors to an intertidal zone pathway dose (e.g., seaweed, shellfish, etc.). Priority in sampling and analysis should be given to both the highest bio-accumulator and the most significant dose pathways to human populations.

This dose assessment will be used by Maine Yankee in the Bid Specification to identify the current and future uses and associated dose pathways and by the Marine Sampling contractors to select flora and fauna for sampling and calculate the intertidal dose from the sampling results. The final report should include an assessment of the dose significance of the sampling results using this dose assessment basis.

7.1.2 Inputs and Data Sources

- Engineering Calculation EC-041-01 "Diffuser and Forebay Dose Assessment"
- NUREG -5512 "Residual Radioactive Contamination from Decommissioning"
- Federal Guidance Report No. 11 (FGR-11) "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (September 1988)
- Regulatory Guide 1.109 "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10 CFR Part 50, Appendix I, October 1977
- Maine Yankee Offsite Dose Calculation Manual
- Maine's Coastal Wetlands, by Alison E. Ward, for Maine Department of Environmental Protection dated September 1999

- Maine Aquaculture Review, by Normandeau Associates, Inc. and Battelle, for Maine Department of Marine Resources dated February 2003
- WWW.seaweed.ie, WWW.alcasoft.com, WWW.garden.org

7.1.3 Current Maine Yankee Intertidal Zone Uses

Currently the intertidal zone at Maine Yankee is used primarily for commercial baitworm digging and soft-shell clam harvesting. Other uses can, at times, include fishing, lobstering and even duck hunting. Recreational swimming has been known to occur historically in Young's (also known as Long) Creek which leads into Bailey Cove.

7.1.3.1 Offsite Dose Calculation Manual (ODCM)

Maine Yankee has been lawfully allowed to discharge low levels of radioactive effluents through its licensed discharges. These include both liquid and gaseous effluents. These effluents were monitored, evaluated for their dose consequences and reported on a semi-annual or annual basis, as required, throughout the operation and decommissioning of the plant. The resultant whole body and organ doses from these effluents were determined by summing the contributions from all pathways using the Offsite Dose Calculation Manual (ODCM). These whole body and organ doses to a theoretical member of the public were similarly reported on a semi-annual or annual basis. The estimated annual doses due to liquid effluents were consistently calculated to be below the 10 CFR Part 50, Appendix I dose criteria.

Exposure pathways that currently are assumed to exist in the ODCM as a result of liquid effluents are ingestion of fish and shellfish, and direct exposure from shoreline sedimentation. The potable water pathway and the irrigated foods pathway are not considered since the receiving water is not suitable for either drinking or irrigation. The direct exposure to worm diggers on tidal flats has been accounted for with an occupancy factor of 325 hours per year (0.037). It is expected that this same occupancy factor would apply to clam harvesters.

The dose analysis for the fish and shellfish pathways assumes a 10 to 1 dilution based on the discharge of effluents via a submerged multipart diffuser which extends approximately 1,000 feet into the tidal estuary. For shoreline direct exposure, a dilution ratio of 25 to 1 has been applied in order to calculate the radionuclide deposition on the exposed sediment.

7.1.3.2 Bailey Cove Mudflats Occupancy

The maximum personnel occupancy for the Bailey Cove was documented in the Maine Yankee Environmental Report and Off site Dose Calculation Manual (ODCM) to be 325 hours. Maine Yankee technical personnel re verified this occupancy factor through interviews with cognizant personnel. Interviews were conducted with Maine Yankee security force personnel, a Maine State Marine Patrol officer, a licensed clam digger, three licensed worm diggers, and one bait shop owner. Based on these interviews, the licensee determined that the occupancy factor of 325 hours per year, presented in the ODCM, was a conservative value. These verification activities were documented in the following records:

 Maine Yankee memorandum dated January 23, 1996 memorandum entitled, "1995 Density Characterization of Clam/Worm Digging Activities in Montsweag Bay;"

- Maine Yankee memorandum dated February 1, 1996, memorandum entitled, "Occupancy Factors for Bailey Cove;"
- Maine Yankee memorandum dated January 30, 1996, memorandum entitled "Information Gathered About Worm Digging Activity That May Impact Occupancy Factors in Bailey Cove;"
- NRC Inspection Report No. 50-309/96-06, dated July 25, 1996. In this inspection report, NRC documented the results of the NRC inspector's conduct of interviews of a Maine State Marine Patrol officer and a Maine State Radiation Control Inspector; reviews of the Maine Yankee ODCM; and walkdowns of the western perimeter of the site. None of the information reviewed by the inspector suggested that personnel occupancy, in areas affected by direct radiation in the Bailey Cove mudflats, exceeded the occupancy factor presented in the ODCM. Based on this review, the inspector concluded that the occupancy factor presented in the ODCM for the Bailey Cove mudflats was reasonable.

In order to derive an incremental dose to the individual clam/worm digger, the intertidal zone direct dose rate from the sediment must be compared to the direct dose rate from soil at background contamination levels. For instance, the hypothetical worm digger referred to in Maine Yankee's Environmental Report dated April 19, 1972 (pg. 5.2-6) would receive a total exposure of about the same magnitude if he did not dig worms. This was because background levels on the mud flats were found to be lower than the background levels on land.

7.1.3.3 Worm Digging

The two species of marine worms which form the basis for the commercial bait worm industry of Montsweag Bay and the Sheepscot River Estuary are the bloodworm, *Glycera dibranchiata*, and the sandworm, *Nereis virens*. Since these biota are not directly ingested by humans, the human dose pathways from commercial bait-worm digging is limited to direct exposure from standing on the mudflats and, to some degree, exposure to limited amounts of sediment which might be ingested and/or carried away on clothes or skin.

7.1.3.4 Clam Harvesting

Soft-shell clams are sometimes harvested in and around the Maine Yankee intertidal zone. The exposure pathways are similar to the worm digger with the exception that this biota is directly ingested by humans and is, therefore, subject to an internal dose pathway associated with this consumption.

7.1.3.5 Swimming

When swimming occurs the individual is subject to direct exposure pathways from the sediment which is subject to shielding by the water. Since the mudflats are not amenable to sunbathing, the occupancy time and exposure pathways associated with the worm/clam digger are expected to result in more dose.

7.1.3.6 Fishing

Fishing can be performed either from shore or a boat. Both forms of fishing subject the individual to internal dose pathways associated with the consumption of fish. When fishing from

shore, the individual is subject to direct exposure pathways from the sediment. However, the occupancy time is not expected to be any more than that estimated for the worm/clam digger.

7.1.4 Potential Future Uses of the Intertidal Zone

Potential future uses of the intertidal zone at Maine Yankee include sea weed production, flooding for lobster pound or fish farming and land reclamation gardening. Each of these possible future uses would involve disturbance of the mudflat environment which would probably require extensive environmental permitting. The consideration of these possible future uses is for potential dose assessment purposes only and does not presume that these uses will be found to be environmentally acceptable or commercially suitable for actual use.

7.1.4.1 Seaweed Growing and Harvesting

Seaweed is present in the shoreline surrounding Maine Yankee. It is used locally as garden fertilizer and by some people as a dietary supplement. Seaweed as a staple item of diet has been used in Japan and China for a very long time. It accounts for some 10% of the Japanese diet and seaweed consumption reached an average of 3.5 kg per Japanese household in 1973. In the western world, seaweed is largely regarded as a health food and, although there has been an upsurge of interest in seaweed as food in the last 20 years, it is unlikely that seaweed consumption there will every be more than a fraction of the Japanese.

When gardeners talk about using seaweed on their plants, they are usually referring to a brown algae, specifically the one know as knotweed or rockweed (*Ascophyllum nodosum*). It's common off the coast of Norway but also grows along the American coast from northern Maine to Canada and through out northern seas. Seaweed meals are best applied at the rate of 1 to 3 pounds per 100 square feet.

Seaweed cultivation takes many forms but there is a kind of evolutionary process through which it develops, the rate of which is market-driven. If demand is low and natural resources adequate, cultivation is unnecessary. As demand increases, natural populations frequently become inadequate and attempts are made to increase production by resource management techniques such as improving harvesting techniques, removing competing species, adding artificial habitats and seeding cleared areas. Such techniques are most highly developed in Japan, China and south-east Asia.

Should such management prove to be inadequate, the use of artificial structures to grow seaweeds becomes inevitable. Fragments of adult plants, juvenile plants, sporelings or spores are seeded onto ropes or other substrata and the plants grown to maturity in the sea. To do this, intimate knowledge of both the biology and life history of the plants is critical. For example, kelps cannot be grown from fragments as there is a high level of specialization and fragments of sporophytes do not regenerate. On the other hand, many red algae do not have this degree of specialization and can easily be grown from portions of the adult plant. Knowledge of the life history is critical in many cases and on-land cultivation of particular life history phases is often necessary for seeding. A considerable amount of technology has gone into the development of reliable methods for the cultivation of seed-stocks and their improvement.

The penultimate development in seaweed cultivation is the growing of plants in artificial impoundments on land. This involves the use of either tanks or ponds into which seawater is pumped and the seaweeds are grown detached and at very high densities. This necessitates the careful study of

the growth parameters of the seaweeds involved and the development of special strains, preferably with high growth rates, but more importantly, adapted to the artificial conditions.

The dose pathways from this potential future use would include direct ingestion of seaweed, indirect ingestion of vegetables fertilized with seaweed and any occupational dose associated with seaweed cultivation from direct exposure to sediment to the extent that impoundments are drained for seeding, harvesting or maintenance. The direct exposure occupancy time is not expected to be greater than that estimated for the worm/clam digger.

7.1.4.2 Flooding for Lobster Pound or Fish Farming

Mudflat areas could be used for fish farming or lobster storage These uses could convert the intertidal zone into a subtidal area by changing the hydrologic system, by the installation of a dam structure that allows seawater to flood at high tide. This is similar to the creation of ponds as described above for cultivation of seaweed. The dose pathways from this potential future use would include ingestion of fish and shell fish and any occupational dose from direct exposure to sediment to the extent that the impoundment is drained for placement, retrieval or maintenance. The direct exposure occupancy time is not expected to be greater than that estimated for the worm/clam digger.

7.1.4.3 Land Reclamation Gardening

Although it is highly unlikely because of the amount of farmable land in Maine, it is possible that future generations may consider reclaiming underwater land areas for farming. If this were the case, the sediment would be farmed as soil. One could then apply all of the dose pathways associated with the residential farmer as described in the License Termination Plan. A simple relationship between dose and residual soil contamination could be made using the soil screening values.

7.1.5 Identification of Scenarios and Pathways/Dose Assessment Framework

As a result of the current and possible future uses described above for the intertidal zone around Maine Yankee, the following scenarios are evaluated for identification of dose pathways and calculation of an incremental intertidal zone dose.

7.1.5.1 Commercial Worm/Clam Digger and Fish/Shell Fish Ingestor

An individual harvests worms and/or clams in the intertidal zone surrounding Maine Yankee at a rate of no more than 325 hours per year. In the process of worm/clam digging, the individual directly ingests a trace amount of sediment and become smeared with a trace amount of sediment in contact with his clothes and exposed surfaces of his skin for a period of about twice as long as the occupational time in the intertidal zone. In addition, the individual consumes fish and seafood in quantities equal to that assumed in the Offsite Dose Calculation Manual. This scenario should produce a greater dose than the possible future use of the intertidal zone as a lobster pound or fish farm or the recreational shoreline fisherman.

Dose from Standing on the Sediment

Maine Yankee will calculate the dose from standing on three feet of sediment containing residual radioactivity in concentrations of 1 pCi/g of ¹³⁷Cs and the dose from a similar source of 1 pCi/g of ⁶⁰Co. The hard-to-detect nuclides will be assumed to be present for the ⁶⁰Co source in proportion to their nuclide fraction specified in the License Termination Plan for sediment, Table 2-

13. These relationships will be used to evaluate the average and maximum concentrations residual radioactivity found in the intertidal zone after the background concentrations have been subtracted.

Dose from Ingesting a Trace Amount of Sediment

The individual is assumed to ingest 0.05 g/day of sediment as a consequence of working in the mudflats. The exposure period is assumed to be 104 days per year, which is derived from two days per week for a year. The resulting dose is calculated by multiplying the dose factor from FGR-11 by the quantity of sediment ingested in a year for each nuclide.

Dose from Contact with a Trace Amount Sediment

The individual is assumed to have a source of sediment spread over a 100 cm2 area of skin. The dose rate calculated from VARSKIN was extrapolated from a 1pCi/cm2 to the actual 0.1 pCi/cm2 for 104 occurrences per year and 12 hours contact hours per occurrence and converted to dose equivalent resulting in an annual dose of 0.0096 mrem/yr per pCi/g for ¹³⁷Cs and 0.0043 mrem/yr per pCi/g for ⁶⁰Co.

Dose from Fish Ingestion

The individual is assumed to consume 20.6 kg/y of fish as described in License Termination Plan section 6.6.7, 6.6.9 and NUREG-5512. This consumption rate is used, along with the dose factors from FGR-11, to establish a relationship between the dose received from this pathway and the average and maximum concentrations of residual radioactivity found in fish after the background concentrations have been subtracted

Dose from Shell Fish Ingestion

The individual is assumed to consume 1 kg/y of shell fish as described in License Termination Plan section 6.6.9 and NUREG-5512. This consumption rate is used, along with the dose factors from FGR-11, to establish a relationship between the dose received from this pathway and the average and maximum concentrations of residual radioactivity found in shell fish after the background concentrations have been subtracted.

7.1.5.2 Seaweed Cultivator, Eater and Fertilizer User

An individual cultivates seaweed for personal use as a dietary supplement and as a fertilizer for the garden. This individual receives no more dose from the sediment that that experienced by the commercial worm/clam digger. The individual consumes seaweed at a rate equal to that assumed in Engineering Calculation 041-01, specified below. The individual also cultivates the garden with seafood used as a fertilizer at a use rate and accumulation factor equal to that assumed in Engineering Calculation 041-01, specified below.

Dose from Standing on the Sediment

This dose will be calculated as described above.

Dose from Ingesting a Trace Amount of Sediment This dose will be calculated as described above. Dose from Contact with a Trace Amount Sediment

This dose will be calculated as described above.

Dose from Seaweed Ingestion

The individual is assumed to consume 875 g/y of seaweed as described in Engineering Calculation EC-041-01. This consumption rate is used, along with the dose factors from FGR-11, to establish a relationship between the dose received from this pathway and the average and maximum concentrations of residual radioactivity found in seaweed after the background concentrations have been subtracted.

Dose from Ingestion of Vegetables Fertilized with Seaweed

The individual is assumed to consume 112 kg/y of vegetables fertilized with seaweed with a biotransfer factors from the seaweed to vegetables of 0.08 for ⁶⁰Co and 0.04 for ¹³⁷Cs as described in Engineering Calculation EC-041-01 and NUREG-5512. This consumption rate and these biotransfer factors are used, along with the dose factors from FGR-11, to establish a relationship between the dose received from this pathway and the average and maximum concentrations of residual radioactivity found in seaweed after the background concentrations have been subtracted.

7.1.5.3 Land Reclamation Farmer

This individual reclaims the submerged land and uses the sediment of the intertidal zone as a garden. All of the dose pathways described for the residential farmer apply to this individual. For ease of use, the soil screening values described in the License Termination Plan are used to establish a relationship between the sediment/soil concentration of residual radioactivity and the resulting dose.

7.1.6 Identification of Flora & Fauna Dose Contributors and Bioaccumulators

The intertidal zone surrounding Maine Yankee is almost entirely made up of mud flats. Mud flats are organically rich regions that support large populations of shellfish, shrimp, mussels, quahogs, baitworms, and small invertebrates. By slowing tidal and wave energy, mud flats buffer the upland against tidal erosion and lessen impacts from storm surge events. Eelgrass beds and macroalgae that add structure to the habitat cover many flats in Maine. Sediments contain high concentrations of benthic diatoms that form the base of the benthic food web, remove nutrients from the mud, and lessen erosion by binding sediments. Small fish like mummichogs and sticklebacks forage on invertebrates and algae during flood and ebb tide. Flats support high concentrations of bacteria, fungi, and other microorganisms that contribute to nutrient cycling and provide food for larger macrofauna like sand worms. They are limited resources that perform a vital function as sinks for contaminants.

Mud flats are critical feeding grounds for 25 species of migrating and resident shorebirds, six species of herons, two species of egrets, glossy ibis, Canada geese, commercial and non-commercial finfish, herring gulls and waterfowl. Flats are nursery grounds for winter flounder and other flatfish. They provide roosting and staging areas for migrating shorebirds. Mud flats are potential habitat for the rare plant pipewort (*Eriocaulon parkeri*).

Mud flats contribute to a multi-million dollar seafood industry in Maine by providing structure and foraging habitat for soft-shell clams, Atlantic herring, blood worms, blue mussels, sand worms, periwinkles, alewife, winter flounder, rainbow smelt, Atlantic mackerel and sand shrimp. The primary dose contributors to the human population are those which are directly ingested. Therefore, the fauna that should be considered for sampling are soft-shell clams, blue mussels, periwinkles, if available, winter flounder, rainbow smelt, and Atlantic mackerel. Samples of seaweed should also be obtained to support the dose assessment for the seaweed eater and fertilizer user.

7.2 DOSIMETRY RESULTS

Applying these concentrations to the dose calculations, we calculate doses shown in Table 7-1 and 7-2. We calculate total doses of less than 0.1 mrem/year when using average values of 60 Co (6 pCi/kg) and 137 Cs (28 pCi/kg), and less than 3.3 mrem/year when the maximum values of 60 Co (180 pCi/kg) and 137 Cs (1000 pCi/kg) are used.

Most of the doses for clam diggers, fisherman, and worm digger are over wet sediment or standing in wet sediment. The correct dose rates are then necessarily for wet sediment. However, for the farmer who drains the tidal flat to form a dry farm using sediment as soil, the sediment should be dry for the dose estimate. We have done this for sediment cores and have calculated an average increase of activity per mass at a fraction of 1.9 times the wet sediment activity per unit mass in the core. The dose will be increased by the same factor and will closely resemble the dose measured on dry land by the high pressure ion chamber (HPIC), which was dragged over the mud flat and back onto dry land. Since the wet or dry sediment on the skin surface is thin, wet or dry activity will have less importance for the gamma dose. All shellfish, finfish and seaweed samples were measured and would be consumed as wet as food. Trace contaminants of sediment in food are also consumed wet. For this reason, the sediment measurements are presented as wet measurements conforming to realistic HPIC measurements for the exposed workers such as clam diggers, fisherman, worm diggers and swimmers.

Maine
Yankee
Marine
Samplin
g Study

	Worm	Clam	Lobster	Recreation	Recreation	Seaweed	Lobster	Land
	Digger	Harvester	Eater	Fishing	Swimming	Harvester	Pound	Reclamation
Pathways	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)
Direct Standing on Sediment	2.58E-03	2.58E-03	NA	2.58E-03	2.58E-03	2.58E-03	2.58E-03	NA
Contact with Trace Sediment	1.71E-02	1.71E-02	NA	NA	NA	1.71E-02	1.71E-02	NA
Ingestion of Trace Sediment	6.78E-05	6.78E-05	NA	NA	NA	6.78E-05	6.78E-05	NA
Ingestion of Clams/Mussels	NA	6.38E-03	NA	NA	NA	NA	NA	NA
Ingestion of Lobster	NA	NA	1.43E-02	NA	NA	NA	1.43E-02	NA
Ingestion of Fish	NA	NA	NA	2.34E-01	NA	NA	NA	NA
Ingestion of Seaweed	NA	NA	NA	NA	NA	6.31E-04	NA	NA
Ingest Veg. Fertilized w/Shells	NA	2.84E-03	2.84E-03	NA	NA	NA	2.84E-03	NA
Ingest Veg. Fertilized w/Seaweed	NA	NA	NA	NA	NA	4.80E-03	NA	NA
Integrated Res. Farmer Dose	NA	NA	NA	NA	NA	NA	NA	1.45E-01
Grand Total	1.97E-02	2.89E-02	1.71E-02	2.37E-01	2.58E-03	2.51E-02	3.68E-02	1.45E-01

Table 7-1. Calculated Doses Using Average Concentrations of Gamma Emitters

MAINE YANKEE FINAL.DOC 2/15/05

	Worm	Clam	Lobster	Recreation	Recreation	Seaweed	Lobster	Land
	Digger	Harvester	Eater	Fishing	Swimming	Harvester	Pound	Reclamation
Pathways	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)	(mrem/yr)
Direct Standing on Sediment	8.48E-02	8.48E-02	NA	8.48E-02	8.48E-02	8.48E-02	8.48E-02	NA
Contact with Trace Sediment	2.67E-02	2.67E-02	NA	NA	NA	2.67E-02	2.67E-02	NA
Ingestion of Trace Sediment	3.31E-04	3.31E-04	NA	NA	NA	3.31E-04	3.31E-04	NA
Ingestion of Clams/Mussels	NA	6.38E-03	NA	NA	NA	NA	NA	NA
Ingestion of Lobster	NA	NA	1.43E-02	NA	NA	NA	1.43E-02	NA
Ingestion of Fish	NA	NA	NA	2.34E-01	NA	NA	NA	NA
Ingestion of Seaweed	NA	NA	NA	NA	NA	6.31E-04	NA	NA
Ingest Veg. Fertilized w/Shells	NA	2.84E-03	2.84E-03	NA	NA	NA	2.84E-03	NA
Ingest Veg. Fertilized w/Seaweed	NA	NA	NA	NA	NA	4.80E-03	NA	NA
Integrated Res. Farmer Dose	NA	NA	NA	NA	NA	NA	NA	3.31E+00
Grand Total	1.12E-01	1.21E-01	1.71E-02	3.19E-01	8.48E-02	1.17E-01	1.29E-01	3.31E+00

Table 7-2.	Calculated Doses Using I	Peak Concentrations (of Gamma Emitters
-------------------	--------------------------	-----------------------	-------------------

8 CONCLUSIONS

8.1 SUMMARY

This report characterizes radionuclides in the marine environment around Maine Yankee and describes the methodologies used in the study. Four sets of sampling were accomplished to complete this study. The results of each type of sampling were provided and are compared with a model of radionuclide distribution from licensed discharges. Additionally, the results are compared to previous work done in the area both pre and post plant operation. The results are also used to calculate an incremental intertidal zone dose, which is compared to the limiting "resident farmer dose calculations in the License Termination Plan for Bailey Point post-decommissioning. Maine Yankee operated from 1972-1996. Plant decommissioning is scheduled to be complete in late spring of 2005.

This sampling effort included a search for areas high in nuclear radiation (hot particle search), samples from the surface of the tidal region, core samples from the tidal region, and samples of biota including seaweed, lobsters, mussels, and fish. The results are discussed in this order. In all, about 600 samples from 147 locations were collected and analyzed. To ensure that the sampling effort was as comprehensive and efficient as possible, a model was used to determine the best locations.

8.2 KEY FINDINGS

- a. The nuclide ⁶⁰Co is stronger on the Oak Island side of Montsweag Bay, near the intake where recent discharges were released. This is reasonable since 5.2-year half-life of ⁶⁰Co will reduce levels when no additions are released in recent times.
- b. The nuclide ¹³⁷Cs is stronger on the Bailey Cove north of the outfall. This is the same area where the ¹³⁷Cs was high during the outfall discharge during 1972-76, before the diffuser was installed. Some of the ¹³⁷Cs is seen near the diffuser release area. The long half-life of ¹³⁷Cs makes this a reasonable result.
- c. Maximum nuclide levels are 10-30 times lower in the sediments of Montsweag Bay and Bailey Cove in comparison to the 1972 and 1974 surveys.
- Radionuclides in the biota are even lower by 10-30 than the concentration in sediments. This was seen in oysters 0.8pCi/kg (0.0008 pCi/g) versus sediment 4 pCi/kg (0.004 pCi/g) (1973-74).
- e. The modeled nuclides follow the same general pattern as the measured nuclides. Sediment from the shore and intertidal zones are higher than those from the main channel of Montsweag Bay, due to higher fluctuations in the main channel.
- f. Surficial samples were lower than deeper levels of core samples. This was due to burial of radionuclides in past releases in the lower ten inches of the cores.
- g. Cores showed double peaks, one from early 1957-69, and a second peak in 1983-85. We think that the first peak is mainly fallout, and second is the Maine Yankee power plant, Chernobyl, and Chinese and French fallout. ²¹⁰Pb dating of one core gives similar sedimentation rates(6 inches equals 30 years). This agrees with the sedimentation rate from Hess et al., (1976), for sediments in Bailey cove.

- h. The total dose from marine biota and sediment ranges from 1.9×10^{-2} mrem/yr for worm diggers to 1.4 x 10 -1 mrem/yr for land reclamation farming. This calculation was based on average values in the sediment for ⁶⁰Co and ¹³⁷Cs.
- i. The upper limit of doses from marine biota and sediment range from 1.1×10^{-1} mrem/yr for worm diggers to 3.3 mrem/yr for land reclamation farming.

9 QUALITY ASSURANCE

The report underwent peer review by all of the project's principal investigators. In addition, data collected during this study were compared to previous investigations.

10 PROJECT ORGANIZATION

At the outset of the project, the Project Manager Dr. Hess met with project staff to establish that the project would meet the highest standards of quality and safety. Copies of the Sample and Analysis Plan were distributed to all project staff. Prior to field collections, the field team leader met with field staff to review project protocol, safety, and operations. The core project staff (Dr. Hess, Mr. Churchill and Ms. Bowen) had weekly conference calls, along with electronic and telephone conversations as needed, to plan and implement the project SAP. Each core staff member met frequently with project staff to communicate project safety and quality objectives.

Acknowledgements

We are grateful to the staff of Camp Chewonki in Wiscasset for use of their facilities and for logistical support. Particular thanks go to Dr. Don Hudson, President of the Chewonki Foundation, and to Ryan Linnahan, a vessel operator a Camp Chewonki. For assistance in specifying the tidal boundary conditions of our model, we are grateful to Dr. Richard Luettich of the University of North Carolina at Moorhead City, NC. In our modeling effort, we benefited through discussions with James Manning of the National Marine Fisheries Service in Woods Hole, MA. We are grateful to Raymond Shadis of Friends of the Coast for his input and advice through all stages of our study. Thanks also go to Christopher Doherty, president of Friends of the Coast, for his involvement in the project and for participating (with Ray Shadis) in the drifter operations of July 2004. Friends of the Coast dedicates their involvement in this project to the late member, Edward Myers of Bristol, the man who inspired and instigated their settlement stipulation for a marine and intertidal zone radiological survey. We also would like to thank David Sutter, lobster fisherman, for specially setting traps for this project. Carol James, Chewonki Foundation, for helping us with site access, and Tim James, Wiscasset Shellfish Commission, for assisting us with shellfish procurement.

The project team also wishes to thank the staff at Maine Yankee, especially Mike Whitney, and Pat Dostie, State of Maine, for their assistance with this project.

11. REFERENCES CITED

- Aubrey, D. G., and Speer, P. E. (1985). "A study of non-linear tidal propagation in shallow inlet/estuarine systems, Part I: Observations," Estuarine, Coastal and Shelf Science 21, 185-205.
- Boon, J. D. and Byrne, R. J. (1981). "On basin hypsometry and the morphodynamic response of coastal inlets," *Marine Geology* 40, 27-48.
- Churchill J. H. 1976. Measurement and Computer Modeling of The Distribution of Reactor Discharged Radionuclides in the Estuarine Sediment near The Maine Yankee Power Plant in Wiscasset Maine. Master's Thesis, University of Maine, Orono Maine, 122 Pp.
- Churchill J. H, C. T. Hess, and C. W. Smith. 1980. Measurement and Computer Modeling of Radionuclide Uptake by Marine Sediments Near a Nuclear Power Reactor. Health Physics Vol. 38 March pp 327 to 340.
- Churchill J. H, C. W. Smith, C. T. Hess and A. Price. 1975. Measurement of radionuclides as a function of position in the estuary of the Maine Yankee atomic power plant. Presented at the American Physical Society Meeting New England section Apr. 19, 1975
- Davis, R.E. (1985) Drifter observations of coastal surface currents during CODE: The method and descriptive view. *Journal of Geophysical Research*, 90, 4741-4755.
- DiLorenzo, J. L. (1988). "The overtide and filtering response of small inlet/bay systems," *Hydrodynamics and sediment dynamics of tidal inlets*. D. G. Aubrey and L. Weishar, eds., 24-53, Springer Verlag, New York, NY.
- Feigner, K.D. and H.S. Harris (1970) Documentation Report FWQA Dynamic Estuary Model (Washington DC: FWQA Dept. of Interior).
- GPS Duratek "Characterization survey report of the Maine Yankee atomic power plant 1998 survey package numbers R 0400, R 1900, R 2000
- Hess, C. T., C. W. Smith, and A. H. Price, 1978, A Multiple Mechanism Description Of Radionuclide Loss from Marine Sediment, Nature, 807-809.
- Hess, C. T., C. W. Smith, J. H. Churchill, and G.F. Burke. 1976. Radioactive ISA Topic Characterization of The Environment near Wiscasset Maine Pre and Post Operational Surveys in The Vicinity of The Maine Yankee Nuclear Reactor. Technical Note ORP/EAD-76-3, U.S. Environmental Protection Agency, Washington D.C. 56 Pp.
- Hess, C.T., C. W. Smith, H. A. Kelly, and F. C. Rock. 1974. A Radioactive Isotopic Characterization of The Environment near Wiscasset Maine: a Pre-Operational Survey in The Vicinity of The Maine Yankee Atomic Power Plant. Radiation Data and Reports, 15 39-52.
- Hess, C.T., Smith, C.W. and Pearce, B.R. (1983) Radionuclide concentrations in the estuarine sediments: comparison of measured and calculated values. In: Wastes in the Oceans, Volume 3 of Radioactive Wastes in the Oceans, Eds: Park, Kester, Duedall, and Ketchum, Wiley pp. 270-284.
- Larson, P.F. 1975. Benthos study of the Sheepscot river Estuary. Annual report submitted to Maine Department of Marine Resources under project no. 3-205-R-1. 43 p.

- Larson, P.F. and Doggett, L 1991. The macroinvertebrate fauna associated with the mud flats of the Gulf of Maine. J. Coastal Res. 7(2): 365-375.
- Larson, P.F., Doggett, L. and A.C. Johnson. 1983. The macroinvertebrate fauna associated with the five sand flats in the northern Gulf of Maine. Proc. N.S. Inst. Sci. 33: 57-63.
- Law, K.Y. (1979) Modeling of tidal flow and distribution of Radionuclides. Masters Thesis, University of Maine, Orono, Maine, 101 pp.
- Lincoln, J. M., and Fitzgerald, D. M. (1988). "Tidal distortions and flood dominance at five small tidal inlets in Southern Maine," *Marine Geology* 82, 133-148.
- Luettich, R.A., J.J. Westerink, and Scheffner, N.W. (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries, Report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical Report DRP-92-6, U.S. Army Engineer, Waterways Experiment Station, Vicksburg, MS.
- Maine Yankee Atomic Power Company. 1978. Final Report. Environmental Surveillance and Studies at the Maine Yankee Nuclear Generating Station, 1969-1977. Maine Yankee Atomic Power Company.
- Maine Yankee Memorandum H.R. Cummings to PL Anderson dated June 24 1994. Results of May 1994 Clam and Sediment Sampling
- Maine Yankee Nuclear Power Station: Annual Radiological Environmental Operating Report, January-December 2002. Prepared by Framatome ANP.
- Mukai, A.Y, J.J. Westerink, and R.A. Luettich (2001) Guidelines for using the Eastcoast 2001 database of tidal constituents within the western North Atlantic, Gulf of Mexico and Caribbean Sea. U.S. Army Corp of Engineers, Coastal and Hydraulic Engineering Technical Note (IV-XX).
- Speer, P. E., and Aubrey, D. G. (1985). "A study of non-linear tidal propagation in shallow inlet/estuarine systems: Part II-theory," *Estuarine, Coastal and Shelf Science* 21, 207-224.
- U.S. Environmental Protection Agency, Environmental Analysis Division. 1976. Radioactive isotopic characterization of the environment near Wiscasset Maine using pre- and post-operational surveys in the vicinity of the Maine Yankee nuclear reactor.
- van de Kreeke, J. (1988). "Hydrodynamics of tidal inlets," *Hydrodynamics and sediment dynamics of tidal inlets*. D. G. Aubrey and L. Weishar, eds., 1-23, Springer, Berlin.
- Westerink, J.J., R.A. Luettich and J.C. Muccino (1994) Modeling tides in the western North Atlantic using unstructured graded grids, *Tellus*, 46A, 178-199.

APPENDIX A

Introduction to Previous Work

This section shows the figures that were associated with two previous modeling projects in Bailey Cove and Montsweag Bay. The first study was done in 1972 modeling the area around Bailey Cove, and was done as a part of a Sea Grant Master's Thesis project by Churchill (1976), and Churchill et al.(1980). The second involved modeling the diffuser and changes in Montsweag Bay as well as Bailey Cove. This project was completed in 1983 by Hess et al. Thomas L. Cameron also helped with the modeling in his undergraduate thesis at the University of Maine. Sediment changes were modeled in 1978 by Hess et al. Appendix Figure A-1 shows the map of the State of Maine and Bailey Cove with Montsweag Bay. Appendix Figure A-2 shows the channel network used for the modeling of Montsweag Bay and Bailey Cove after the diffuser was put in. Two early isocuric plots for ⁶⁰Co in September 18, 1974 and June 12, 1975 are depicted in Appendix Figures, A-3 and A-4, and show concentrations of ⁶⁰Co when the plant was releasing at the outfall. Appendix Figure A-5 shows a construction sheet for isocuric plots for ¹³⁷Cs in a survey taken after the diffuser was in place and gives some higher values for ¹³⁷Cs along the shore of Westport Island and in a vicinity of the old outfall at Bailey Cove. Appendix Figure A -6 shows a sample of currents calculated at slack high tide. Appendix Figure A-6 shows concentrations estimated in the sediment for ¹³⁷Cs with releases at high tide of 4.38 hours. Appendix Figure A-8 shows sediment concentrations for ¹³⁷Cs for releases of 4.38 hours beginning and mid-ebb tide and Appendix Figure A-9 shows estimated sediment concentrations of ¹³⁷Cs for releases of 17.5 hours beginning at high tide. Appendix Figure A-10 shows sediment concentrations estimated for ⁵⁸Co for releases of 4.38 hours beginning and mid tide. Appendix Figure A-11 shows simulated pCi/ft contours after a 17.5 hour release on high tide. This shows a major concentration of the nuclides in the vicinity of the diffuser and to the south. Appendix Figure A-12 shows simulated contours for ⁵⁸Co for a 17.5 hour release on high tide, and also shows major concentrations around the diffuser and a smaller concentration at the head of Bailey Cove. Appendix Figure A-13 shows isocuric plots for the ⁵⁸Co actually measured in pCi/kg and shows maximum values around the diffuser and upper Bailey Cove.

Fifty samples were taken in the first transect of Bailey Cove from south Long Ledge to the top of Bailey Cove, with one sample at the outfall. The maximum was 5620pCi/kg of ⁵⁸Co and 500 pCi/kg of ⁶⁰Co at #28. A hot particle was found on the Eaton Farm side of Bailey Cove, near the shore (7700 pCi of ⁶⁰Co, 530 pCi of ⁵⁸Co, 670 pCi of ⁴⁶Sc, 120 pCi of ⁵⁴Mn) for a total of 9000 pCi in a sample weighing 20 micrograms. The average sediment was 1000 pCi/kg of ⁵⁸Co, and 120 pCi/kg of ⁶⁰Co, with ¹³⁷Cs at about 750 pCi/kg. The highest values were observed at the outfall and along the upper (north) half of Bailey Cove near the Eaton Farm side.

Maine Yankee Marine Sampling Study

Appendix Figure A-1. Project locus map (1978).

Appendix Figure A-2. Channel network used for Montsweag Bay and Bailey Cove modeling. (Source: Churchill et al. 1980; Hess et al. 1983)

Appendix Figure A-3. Actual contours for ⁶⁰Co measured on September 18, 1974 during licensed releases.

Appendix Figure A-4. Actual contours for ⁶⁰Co measured on June 12, 1975 during licensed releases.

Appendix Figure A-5. Actual contours for measured ¹³⁷Cs after Maine Yankee diffuser was in place (Hess et al. 1978).

Appendix Figure A-6. Sample of currents at slack high tide (1978).

Appendix Figure A-7. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at high tide (1978).

Appendix Figure A-8. Estimated ¹³⁷Cs concentrations 4.38 hours after a release beginning at midebb tide (1978).

Appendix Figure A-9 Estimated ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (1978).

Appendix Figure A-10. Estimated ⁵⁸Co concentrations 17.5 hours after a release beginning at midebb tide (1978).

Appendix Figure A-11. Simulated contours for ¹³⁷Cs concentrations 17.5 hours after a release beginning at high tide (Hess et al. 1978).

Appendix Figure A-12. Simulated contours for ⁵⁸Co 17.5 hours after a release beginning at high tide (1978).

Appendix Figure A-13. Actual contours for ⁵⁸Co measured after 17.5 hours beginning at high tide (1978).
The actual original data are shown in Appendix Tables A-1 and A-2.

Location	Collection Date	Count Date	Type of Sample	Thorium Series pCi/kg	Uranium Series pCi/kg	Other Natural pCi/kg	¹³⁷ Cs pCi/kg	¹³⁴ Cs pCi/kg	⁵⁸ Co pCi/kg	⁶⁰ Co pCi/kg	⁵⁴ Mn pCi/kg
Foxbird Island	6/29/72	7/28/72	Tidal marsh sediment	250 ± 130	500 ± 180	15000 ± 350	350 ± 32	< 15	< 12	< 15	< 10
Murphy's Corner	7/3/72	7/27/72	Tidal flat sediment	1660 ± 280	740 ± 120	15200 ± 1200	450 ± 80	< 30	< 25	< 30	< 20
Young's (or Long) Creek	6/12/72	7/14/72	Tidal marsh soil	880 ± 250	1075 ± 120	18200 ± 400	$\begin{array}{c} 800 \\ \pm 80 \end{array}$	< 30	< 25	< 30	< 20

Appendix Table A-1. Pre-operational Laboratory Soil & Sediment Gamma Ray Analysis

Location	Collection Date	Count Date	Type of Sample	Thorium Series pCi/kg	Uranium Series pCi/kg	Other Natural pCi/kg	¹³⁷ Cs pCi/kg	¹³⁴ Cs pCi/kg	⁵⁸ Co pCi/kg	⁶⁰ Co pCi/kg	⁵⁴ Mn pCi/kg
Young's (or Long) Creek	8/14/74	1/18/74	Tidal marsh soil	1100 ± 120	800 ± 70	19400 ± 780	700 ± 50	<35	<25	<30	<15
Foxbird Island	8/14/74	11/16/74	Soil	900 ± 90	700 ± 200	7300 ± 950	4600 ±180	<35	<25	<30	<15
Murphy's Corner	8/14/74	11/20/74	Tidal flat sediment	900 ± 90	800 ±72	18000 ± 500	500 ± 35	<35	<25	<30	<15

Appendix Table A-2.	Post-operational	Laboratory Soil &	: Sediment Gamma	Ray An	alysis
---------------------	------------------	-------------------	------------------	--------	--------